We study the following linearly coupled Schrödinger equations:
@article{AIHPC_2014__31_3_429_0, author = {Chen, Zhijie and Zou, Wenming}, title = {Standing waves for linearly coupled {Schr\"odinger} equations with critical exponent}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {429--447}, publisher = {Elsevier}, volume = {31}, number = {3}, year = {2014}, doi = {10.1016/j.anihpc.2013.04.003}, zbl = {1300.35029}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.003/} }
TY - JOUR AU - Chen, Zhijie AU - Zou, Wenming TI - Standing waves for linearly coupled Schrödinger equations with critical exponent JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 429 EP - 447 VL - 31 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.003/ DO - 10.1016/j.anihpc.2013.04.003 LA - en ID - AIHPC_2014__31_3_429_0 ER -
%0 Journal Article %A Chen, Zhijie %A Zou, Wenming %T Standing waves for linearly coupled Schrödinger equations with critical exponent %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 429-447 %V 31 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.003/ %R 10.1016/j.anihpc.2013.04.003 %G en %F AIHPC_2014__31_3_429_0
Chen, Zhijie; Zou, Wenming. Standing waves for linearly coupled Schrödinger equations with critical exponent. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 429-447. doi : 10.1016/j.anihpc.2013.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.003/
[1] Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett. 70 (1993), 2395-2398 | Zbl
, ,[2] Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664
, ,[3] Local mountain-pass for a class of elliptic problems in involving critical growth, Nonlinear Anal. 40 (2001), 495-510 | Zbl
, , ,[4] Remarks on some systems of nonlinear Schrödinger equations, Fixed Point Theory Appl. 4 (2008), 35-46 | Zbl
,[5] Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), 85-112 | Zbl
, , ,[6] Solitons of linearly coupled systems of semilinear non-autonomous equations on , J. Funct. Anal. 254 (2008), 2816-2845 | Zbl
, , ,[7] Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381 | Zbl
, ,[8] Nonlinear scalar field equations. I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-346, Arch. Ration. Mech. Anal. 82 (1983), 347-376 | Zbl
, ,[9] Remarks on the Schrödinger operator with singularly complex potentials, J. Math. Pures Appl. 58 (1979), 137-151 | Zbl
, ,[10] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477 | Zbl
, ,[11] Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), 185-200 | Zbl
, ,[12] Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), 295-316 | Zbl
, ,[13] Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differential Equations 18 (2003), 207-219 | MR | Zbl
, ,[14] Uniqueness of the ground state solution for and a variational characterization of other solutions, Arch. Ration. Mech. Anal. 46 (1972), 81-95 | MR | Zbl
,[15] On coupled systems of Schrödinger equations, Adv. Differential Equations 16 (2011), 775-800 | MR | Zbl
, ,[16] Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal. 262 (2012), 3091-3107 | MR | Zbl
, ,[17] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121-137 | MR | Zbl
, ,[18] Semiclassical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1997), 245-265 | MR | Zbl
, ,[19] Hartree–Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597
, , , ,[20] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss. vol. 224, Springer, Berlin (1983) | MR | Zbl
, ,[21] A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 40 (2011), 449-480 | MR | Zbl
, ,[22] The concentration–compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 223-283 | EuDML | Numdam | MR | Zbl
,[23] Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations 229 (2006), 538-569 | MR | Zbl
, ,[24] Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc. 10 (2008), 47-71 | EuDML | MR | Zbl
, , ,[25] On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Commun. Math. Phys. 131 (1990), 223-253 | MR | Zbl
,[26] Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), 258-281 | MR | Zbl
,[27] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291 | MR | Zbl
,[28] Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55 (1977), 149-162 | MR | Zbl
,[29] J. Zhang, Z. Chen, W. Zou, Standing waves for nonlinear Schrödinger equations involving critical growth, preprint. | MR
Cité par Sources :