This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cancès, M. Lewin, Arch. Ration. Mech. Anal. 197 (1) (2010) 139–177] to the time-dependent setting. In particular, we prove the existence and uniqueness of the nonlinear Hartree dynamics (also called the random phase approximation in the physics literature), in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell–Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.
@article{AIHPC_2012__29_6_887_0, author = {Canc\`es, Eric and Stoltz, Gabriel}, title = {A mathematical formulation of the random phase approximation for crystals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {887--925}, publisher = {Elsevier}, volume = {29}, number = {6}, year = {2012}, doi = {10.1016/j.anihpc.2012.05.004}, mrnumber = {2995100}, zbl = {1273.82073}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.05.004/} }
TY - JOUR AU - Cancès, Eric AU - Stoltz, Gabriel TI - A mathematical formulation of the random phase approximation for crystals JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 887 EP - 925 VL - 29 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.05.004/ DO - 10.1016/j.anihpc.2012.05.004 LA - en ID - AIHPC_2012__29_6_887_0 ER -
%0 Journal Article %A Cancès, Eric %A Stoltz, Gabriel %T A mathematical formulation of the random phase approximation for crystals %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 887-925 %V 29 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.05.004/ %R 10.1016/j.anihpc.2012.05.004 %G en %F AIHPC_2012__29_6_887_0
Cancès, Eric; Stoltz, Gabriel. A mathematical formulation of the random phase approximation for crystals. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 887-925. doi : 10.1016/j.anihpc.2012.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2012.05.004/
[1] Quantum theory of the dielectric constant in real solids, Phys. Rev. 126 no. 2 (1962), 413-420 | MR | Zbl
,[2] Self-consistent relaxation-time models in quantum mechanics, Commun. Partial Differ. Equ. 21 no. 3–4 (1996), 473-506 | MR | Zbl
,[3] Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations, Arch. Ration. Mech. Anal. 198 no. 1 (2010), 273-330 | MR | Zbl
, , , ,[4] On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci. 9 (1999), 963-990 | MR | Zbl
, ,[5] A new approach to the modelling of local defects in crystals: the reduced Hartree–Fock case, Commun. Math. Phys. 281 (2008), 129-177 | MR | Zbl
, , ,[6] The dielectric permittivity of crystals in the reduced Hartree–Fock approximation, Arch. Ration. Mech. Anal. 197 no. 1 (2010), 139-177 | MR | Zbl
, ,[7] The time-dependent Hartree–Fock equations with Coulomb two-body interaction, Commun. Math. Phys. 46 (1976), 99-104 | MR | Zbl
,[8] Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys. 16 (1975), 1122-1130 | MR | Zbl
, ,[9] Dispersion for Schrödinger equation with periodic potential in 1D, Commun. Partial Differ. Equ. 33 no. 11 (2008), 2064-2095 | MR | Zbl
,[10] Mathematical Analysis and Numerical Methods for Science and Technology. Evolution Problems I, Springer (2000) | MR
, ,[11] Effective Maxwell equations from time-dependent density functional theory, Acta Math. Sin. 32 (2011), 339-368 | MR | Zbl
, , ,[12] Self-consistent field approach to the many-electron problem, Phys. Rev. 115 no. 4 (1959), 786-790 | MR | Zbl
, ,[13] Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation, Commun. Math. Phys. 257 (2005), 515-562 | MR | Zbl
, , ,[14] From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich (2008) | MR | Zbl
,[15] Time-Dependent Density Functional Theory, Lecture Notes in Physics vol. 706, Springer, Berlin (2006) | MR
, , , , , (ed.),[16] Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences vol. 44, Springer, New York (1983) | MR | Zbl
,[17] Methods of Modern Mathematical Physics. Fourier Analysis and Self-Adjointness, vol. II, Academic Press (1975) | Zbl
, ,[18] Methods of Modern Mathematical Physics. Analysis of Operators, vol. IV, Academic Press (1978) | MR | Zbl
, ,[19] Methods of Modern Mathematical Physics. Scattering Theory, vol. III, Academic Press (1979) | MR | Zbl
, ,[20] Bounds in the Yukawa2 quantum field theory: Upper bound on the pressure, Hamiltonian bound and linear lower bound, Commun. Math. Phys. 45 (1975), 99-114 | MR
, ,[21] Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series vol. 35, Cambridge University Press, Cambridge (1979) | MR | Zbl
,[22] Time dependent approach to scattering from impurities in a crystal, Commun. Math. Phys. 33 (1973), 335-343 | MR
,[23] Dielectric constant with local field effects included, Phys. Rev. 129 no. 1 (1963), 62-69 | Zbl
,[24] Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110 (1987), 415-426 | MR | Zbl
,Cité par Sources :