We study flow-induced enhancement of the speed of pulsating traveling fronts for reaction–diffusion equations, and quenching of reaction by fluid flows. We prove, for periodic flows in two dimensions and any combustion-type reaction, that the front speed is proportional to the square root of the (homogenized) effective diffusivity of the flow. We show that this result does not hold in three and more dimensions. We also prove conjectures from Audoly, Berestycki and Pomeau (2000) [1], Berestycki (2003) [3], Fannjiang, Kiselev and Ryzhik (2006) [11] for cellular flows, concerning the rate of speed-up of fronts and the minimal flow amplitude necessary to quench solutions with initial data of a fixed (large) size.
@article{AIHPC_2011__28_5_711_0, author = {Zlato\v{s}, Andrej}, title = {Reaction{\textendash}diffusion front speed enhancement by flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {711--726}, publisher = {Elsevier}, volume = {28}, number = {5}, year = {2011}, doi = {10.1016/j.anihpc.2011.05.004}, mrnumber = {2838397}, zbl = {1328.35105}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.004/} }
TY - JOUR AU - Zlatoš, Andrej TI - Reaction–diffusion front speed enhancement by flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 711 EP - 726 VL - 28 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.004/ DO - 10.1016/j.anihpc.2011.05.004 LA - en ID - AIHPC_2011__28_5_711_0 ER -
%0 Journal Article %A Zlatoš, Andrej %T Reaction–diffusion front speed enhancement by flows %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 711-726 %V 28 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.004/ %R 10.1016/j.anihpc.2011.05.004 %G en %F AIHPC_2011__28_5_711_0
Zlatoš, Andrej. Reaction–diffusion front speed enhancement by flows. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 711-726. doi : 10.1016/j.anihpc.2011.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.004/
[1] Réaction diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Paris, Série IIb 328 (2000), 255-262 | Zbl
, , ,[2] Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), 949-1032 | MR | Zbl
, ,[3] The influence of advection on the propagation of fronts in reaction–diffusion equations, , (ed.), Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C vol. 569, Kluwer, Doordrecht (2003) | Zbl
,[4] The speed of propagation for KPP type problems, I – Periodic framework, J. European Math. Soc. 7 (2005), 173-213 | EuDML | MR | Zbl
, , ,[5] Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), 451-480 | MR | Zbl
, , ,[6] Asymptotics of solute dispersion in periodic porous media, SIAM J. Appl. Math. 49 (1989), 86-98 | MR | Zbl
, , ,[7] Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal. 154 (2000), 53-91 | MR | Zbl
, , , ,[8] Quenching of flames by fluid advection, Comm. Pure Appl. Math. 54 (2001), 1320-1342 | MR | Zbl
, , ,[9] Diffusion and mixing in fluid flow, Ann. of Math. (2) 168 (2008), 643-674 | MR | Zbl
, , , ,[10] Min–max formulae for the speeds of pulsating traveling fronts in heterogeneous media, Annali Mat. Pura Appl. 189 (2010), 47-66 | MR | Zbl
,[11] Quenching of reaction by cellular flows, Geom. Funct. Anal. 16 (2006), 40-69 | MR | Zbl
, , ,[12] Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54 (1994), 333-408 | MR | Zbl
, ,[13] S. Heinze, Large convection limits for KPP fronts, Max Planck Institute for Mathematics, Preprint No. 21/2005, 2005.
[14] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin (1994) | MR
, , ,[15] Activation energy effect on flame propagation in large-scale vortical flows, Combust. Theory Model. 6 (2002), 479-485 | MR | Zbl
, , ,[16] Flame propagation and extinction in large-scale vortical flows, Combust. Flame 120 (2000), 222-232
, ,[17] Enhancement of the traveling front speeds in reaction–diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 309-358 | EuDML | Numdam | MR | Zbl
, ,[18] Quenching of combustion by shear flows, Duke Math. J. 132 (2006), 49-72 | MR | Zbl
, ,[19] Étude de lʼéquation de la chaleur de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh. 1 (1937), 1-25
, , ,[20] Random perturbations of 2-dimensional Hamiltonian flows, Probab. Theory Related Fields 129 (2004), 37-62 | MR | Zbl
,[21] Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena, Phys. Rep. 314 (1999), 237-574 | MR
, ,[22] Long-time behaviour of heat flow: global estimates and exact asymptotics, Arch. Ration. Mech. Anal. 140 (1997), 161-195 | MR | Zbl
,[23] Bounds on the speed of propagation of the KPP fronts in a cellular flow, Arch. Ration. Mech. Anal. 184 (2007), 23-48 | MR | Zbl
, ,[24] Stochastic Differential Equations, Springer-Verlag, Berlin (1995) | MR
,[25] KPP pulsating front speed-up by flows, Commun. Math. Sci. 5 (2007), 575-593 | MR | Zbl
, ,[26] Shock Waves and Reaction–Diffusion Equations, Springer-Verlag, New York (1994) | MR | Zbl
,[27] Flame enhancement and quenching in fluid flows, Combust. Theory Model. 7 (2003), 487-508 | MR | Zbl
, , , , ,[28] Existence of planar flame fronts in convective-diffusive media, Arch. Ration. Mech. Anal. 121 (1992), 205-233 | MR | Zbl
,[29] Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity 18 (2005), 1463-1475 | MR | Zbl
,[30] Pulsating front speed-up and quenching of reaction by fast advection, Nonlinearity 20 (2007), 2907-2921 | MR | Zbl
,[31] Diffusion in fluid flow: Dissipation enhancement by flows in 2D, Comm. Partial Differential Equations 35 (2010), 496-534 | MR | Zbl
,[32] Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows, Arch. Ration. Mech. Anal. 195 (2010), 441-453 | MR | Zbl
,Cité par Sources :