Existence of weak solutions for the incompressible Euler equations
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 727-730.

Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions and for arbitrary space dimension d2, there exist infinitely many global weak solutions to the incompressible Euler equations with initial data v 0 , where v 0 may be any solenoidal L 2 -vectorfield. In addition, the energy of these solutions is bounded in time.

@article{AIHPC_2011__28_5_727_0,
     author = {Wiedemann, Emil},
     title = {Existence of weak solutions for the incompressible {Euler} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {727--730},
     publisher = {Elsevier},
     volume = {28},
     number = {5},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.05.002},
     mrnumber = {2838398},
     zbl = {1228.35172},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/}
}
TY  - JOUR
AU  - Wiedemann, Emil
TI  - Existence of weak solutions for the incompressible Euler equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 727
EP  - 730
VL  - 28
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/
DO  - 10.1016/j.anihpc.2011.05.002
LA  - en
ID  - AIHPC_2011__28_5_727_0
ER  - 
%0 Journal Article
%A Wiedemann, Emil
%T Existence of weak solutions for the incompressible Euler equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 727-730
%V 28
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/
%R 10.1016/j.anihpc.2011.05.002
%G en
%F AIHPC_2011__28_5_727_0
Wiedemann, Emil. Existence of weak solutions for the incompressible Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 727-730. doi : 10.1016/j.anihpc.2011.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/

[1] Peter Constantin, Ciprian Foias, Navier–Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago (1988) | MR | Zbl

[2] Camillo De Lellis, László Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 225-260 | MR | Zbl

[3] Jean Leray, Sur le mouvement dʼun liquide visqueux emplissant lʼespace, Acta Math. 63 no. 1 (1934), 193-248 | MR

[4] László Székelyhidi, Emil Wiedemann, Generalised Young measures generated by ideal incompressible fluid flows, arXiv:1101.3499 (2011) | MR | Zbl

Cité par Sources :