Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions and for arbitrary space dimension , there exist infinitely many global weak solutions to the incompressible Euler equations with initial data , where may be any solenoidal -vectorfield. In addition, the energy of these solutions is bounded in time.
@article{AIHPC_2011__28_5_727_0, author = {Wiedemann, Emil}, title = {Existence of weak solutions for the incompressible {Euler} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {727--730}, publisher = {Elsevier}, volume = {28}, number = {5}, year = {2011}, doi = {10.1016/j.anihpc.2011.05.002}, mrnumber = {2838398}, zbl = {1228.35172}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/} }
TY - JOUR AU - Wiedemann, Emil TI - Existence of weak solutions for the incompressible Euler equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 727 EP - 730 VL - 28 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/ DO - 10.1016/j.anihpc.2011.05.002 LA - en ID - AIHPC_2011__28_5_727_0 ER -
%0 Journal Article %A Wiedemann, Emil %T Existence of weak solutions for the incompressible Euler equations %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 727-730 %V 28 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/ %R 10.1016/j.anihpc.2011.05.002 %G en %F AIHPC_2011__28_5_727_0
Wiedemann, Emil. Existence of weak solutions for the incompressible Euler equations. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 727-730. doi : 10.1016/j.anihpc.2011.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2011.05.002/
[1] Navier–Stokes Equations, Chicago Lectures in Math., The University of Chicago Press, Chicago (1988) | MR | Zbl
, ,[2] On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 225-260 | MR | Zbl
, ,[3] Sur le mouvement dʼun liquide visqueux emplissant lʼespace, Acta Math. 63 no. 1 (1934), 193-248 | MR
,[4] Generalised Young measures generated by ideal incompressible fluid flows, arXiv:1101.3499 (2011) | MR | Zbl
, ,Cité par Sources :