We prove that the only domain Ω such that there exists a solution to the following problem in Ω, on ∂Ω, and , for a given constant c, is the unit ball , if we assume that Ω lies in an appropriate class of Lipschitz domains.
@article{AIHPC_2011__28_4_551_0, author = {Canuto, B.}, title = {A local symmetry result for linear elliptic problems with solutions changing sign}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {551--564}, publisher = {Elsevier}, volume = {28}, number = {4}, year = {2011}, doi = {10.1016/j.anihpc.2011.03.005}, zbl = {1242.35182}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.005/} }
TY - JOUR AU - Canuto, B. TI - A local symmetry result for linear elliptic problems with solutions changing sign JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 551 EP - 564 VL - 28 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.005/ DO - 10.1016/j.anihpc.2011.03.005 LA - en ID - AIHPC_2011__28_4_551_0 ER -
%0 Journal Article %A Canuto, B. %T A local symmetry result for linear elliptic problems with solutions changing sign %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 551-564 %V 28 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.005/ %R 10.1016/j.anihpc.2011.03.005 %G en %F AIHPC_2011__28_4_551_0
Canuto, B. A local symmetry result for linear elliptic problems with solutions changing sign. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 4, pp. 551-564. doi : 10.1016/j.anihpc.2011.03.005. http://www.numdam.org/articles/10.1016/j.anihpc.2011.03.005/
[1] Approximate radial symmetry for overdetermined boundary value problems, Adv. Differential Equations 4 no. 6 (1999), 907-932 | Zbl
, , ,[2] A symmetry theorem for condensers, Math. Methods Appl. Sci. 15 (1992), 315-320 | Zbl
,[3] Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems, J. Reine Angew. Math. 620 (2008), 165-183 | Zbl
, , ,[4] A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo 51 (2002), 375-390 | Zbl
, ,[5] Local overdetermined linear elliptic problems in Lipschitz domains with solutions changing sign, Rend. Istit. Mat. Univ. Trieste XL (2009), 1-27 | Zbl
, ,[6] Some remarks on solutions to an overdetermined elliptic problem in divergence form in a ball, Ann. Mat. Pura Appl. 186 (2007), 591-602 | Zbl
, ,[7] Use of the domain derivative to prove symmetry results in partial differential equations, Math. Nachr. 192 (1998), 91-103 | Zbl
, ,[8] Remarks on an overdetermined boundary value problem, Calc. Var. Partial Differential Equations 31 (2008), 351-357 | Zbl
, ,[9] Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis (Munich) 29 (2009), 85-93 | Zbl
, , , ,[10] Partially overdetermined elliptic boundary value problems, J. Differential Equations 245 (2008), 1299-1322 | Zbl
, ,[11] Overdetermined problems with possibly degenerate ellipticity, a geometric approach, Math. Z. 254 (2006), 117-132 | Zbl
, , ,[12] A symmetry result related to some overdetermined boundary value problems, Amer. J. Math. 111 (1989), 9-33 | Zbl
, ,[13] No geometric approach for general overdetermined elliptic problems with nonconstant source, Matematiche (Catania) 60 (2005), 259-268 | Zbl
,[14] Radial symmetry and uniqueness for an overdetermined problem, Math. Methods Appl. Sci. 24 (2001), 103-115 | Zbl
,[15] On two free boundary problems in potential theory, J. Math. Anal. Appl. 161 no. 2 (1991), 332-342 | Zbl
, ,[16] On a free boundary problem in electrostatics, Math. Methods Appl. Sci. 12 (1990), 387-392 | Zbl
,[17] On the conformal capacity problem, (ed.), Geometry of Solutions to Partial Differential Equations, Academic, London (1989) | Zbl
, ,[18] Serrinʼs result for domains with a corner or cusp, Duke Math. J. 91 (1998), 29-31 | Zbl
,[19] Radial symmetry for elliptic boundary value problems on exterior domains, Arch. Rat. Mech. Anal. 137 (1997), 381-394 | Zbl
,[20] A symmetry problem in potential theory, Arch. Rat. Mech. Anal. 43 (1971), 304-318 | Zbl
,[21] Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. H. Poincaré, Anal. Non Linéaire 18 (2001), 135-156 | EuDML | Numdam | Zbl
,[22] Symmetry and regularity for general regions having solutions to certain overdetermined boundary value problems, Atti Sem. Mat. Fis. Univ. Modena 40 (1992), 443-484 | Zbl
,[23] Remark on the preceding paper by Serrin, Arch. Rat. Mech. Anal. 43 (1971), 319-320 | Zbl
,Cité par Sources :