In this paper we extend the Tanaka finiteness theorem and inequality for the number of symmetries to arbitrary distributions (differential systems) and provide several applications.
@article{AIHPC_2011__28_1_75_0, author = {Kruglikov, Boris}, title = {Finite-dimensionality in {Tanaka} theory}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {75--90}, publisher = {Elsevier}, volume = {28}, number = {1}, year = {2011}, doi = {10.1016/j.anihpc.2010.10.001}, mrnumber = {2765511}, zbl = {1260.58001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2010.10.001/} }
TY - JOUR AU - Kruglikov, Boris TI - Finite-dimensionality in Tanaka theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 75 EP - 90 VL - 28 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2010.10.001/ DO - 10.1016/j.anihpc.2010.10.001 LA - en ID - AIHPC_2011__28_1_75_0 ER -
Kruglikov, Boris. Finite-dimensionality in Tanaka theory. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 1, pp. 75-90. doi : 10.1016/j.anihpc.2010.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2010.10.001/
[1] Rank 2 distributions of Monge equations: symmetries, equivalences, extensions, arXiv:0910.5946 [math.DG] (2009) | MR
, ,[2] Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. Éc. Norm. Super. (3) 27 (1910), 109-192 | EuDML | JFM | Numdam | MR
,[3] Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France 42 (1914), 12-48 | EuDML | JFM | Numdam
,[4] On automorphism groups of some types of generic distributions, Differential Geom. Appl. 27 (2009), 769-779 | MR | Zbl
, ,[5] On local geometry of nonholonomic rank 2 distributions, J. Lond. Math. Soc. 80 (2009), 545-566 | MR | Zbl
, ,[6] Graded nilpotent Lie algebras of infinite type, arXiv:1001.0379 [math.DG] (2010) | MR | Zbl
, ,[7] Integrability criteria for systems of nonlinear partial differential equations, J. Differential Geom. 1 no. 3 (1967), 269-307 | MR | Zbl
,[8] Sur la lecture correcte d'un résultat d'Élie Cartan, C. R. Acad. Sci. Paris Sér. A–B 287 no. 4 (1978), A241-A244 | MR | Zbl
, , ,[9] The classification of the irreducible complex algebras of infinite type, J. Anal. Math. 18 (1967), 107-112 | MR | Zbl
, , ,[10] Transformation Groups in Differential Geometry, Springer-Verlag (1972) | MR | Zbl
,[11] Geometry of differential equations, , (ed.), Handbook on Global Analysis, Elsevier Sci. (2008), 725-771 | MR
, ,[12] Geometry of Jet Spaces and Differential Equations, Gordon and Breach (1986) | Zbl
, , ,[13] Lie Equations, vol. 1: General Theory, Princeton University Press, University of Tokyo Press (1972) | MR | Zbl
, ,[14] On E. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math. 79 (1957), 1-47 | MR | Zbl
,[15] Geometric structures on filtered manifolds, Hokkaido Math. J. 22 no. 3 (1993), 263-347 | MR | Zbl
,[16] The classification of the real primitive infinite Lie algebras, J. Math. Kyoto Univ. 10 no. 2 (1970), 207-243 | MR | Zbl
, ,[17] Geometric approach to Goursat flags, Ann. Inst. H. Poincaré Anal. Non Lineáire 18 no. 4 (2001), 459-493 | EuDML | Numdam | MR | Zbl
, ,[18] Contact and 1-quasiconformal maps on Carnot groups, arXiv:1001.3817 [math.DG] (2010) | MR | Zbl
, ,[19] J.-P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, 1964. | MR
[20] On the infinite groups of Lie and Cartan, J. Anal. Math. 15 (1965), 1-114 | MR | Zbl
, ,[21] Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. (N.S.) 75 (1969), 179-239 | MR | Zbl
,[22] Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs (1964) | MR | Zbl
,[23] On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10 no. 1 (1970), 1-82 | MR | Zbl
,[24] Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59-69 | MR | Zbl
,[25] Zur Invariantentheorie der Systeme Pfaff'scher Gleichungen, Berichte Ges. Leipzig Math. Phys. Classe L (1898), 207-229 | JFM
,[26] Differential systems associated with simple graded Lie algebras, Adv. Stud. Pure Math. 22 (1993), 413-494 | MR | Zbl
,[27] On Tanaka's prolongation procedure for filtered structures of constant type, SIGMA 5 (2009), 094 | EuDML | MR | Zbl
,Cité par Sources :