@article{AIHPC_2009__26_6_2457_0, author = {Amaziane, B. and Antontsev, S. and Pankratov, L. and Piatnitski, A.}, title = {Homogenization of $p${-Laplacian} in {Perforated} {Domain}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2457--2479}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.06.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.06.004/} }
TY - JOUR AU - Amaziane, B. AU - Antontsev, S. AU - Pankratov, L. AU - Piatnitski, A. TI - Homogenization of $p$-Laplacian in Perforated Domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2457 EP - 2479 VL - 26 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.06.004/ DO - 10.1016/j.anihpc.2009.06.004 LA - en ID - AIHPC_2009__26_6_2457_0 ER -
%0 Journal Article %A Amaziane, B. %A Antontsev, S. %A Pankratov, L. %A Piatnitski, A. %T Homogenization of $p$-Laplacian in Perforated Domain %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2457-2479 %V 26 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.06.004/ %R 10.1016/j.anihpc.2009.06.004 %G en %F AIHPC_2009__26_6_2457_0
Amaziane, B.; Antontsev, S.; Pankratov, L.; Piatnitski, A. Homogenization of $p$-Laplacian in Perforated Domain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2457-2479. doi : 10.1016/j.anihpc.2009.06.004. http://www.numdam.org/articles/10.1016/j.anihpc.2009.06.004/
[1] Regularity Results for a Class of Functionals With Non-Standard Growth, Arch. Ration. Mech. Anal. 156 (2001) 121-140. | MR | Zbl
, ,[2] Homogenization of a Class of Quasilinear Elliptic Equations in High-Contrast Fissured Media, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 1131-1155. | MR | Zbl
, , ,[3] Homogenization of a Class of Nonlinear Elliptic Equations With Nonstandard Growth, C. R. Mécanique 335 (2007) 138-143. | Zbl
, , ,[4] Γ-Convergence and Homogenization of Functionals on Sobolev Spaces With Variable Exponents, J. Math. Anal. Appl. 342 (2008) 1192-1202. | MR | Zbl
, , , ,[5] Nonlocal Effects in Homogenization of -Laplacian in Perforated Domains, Nonlinear Anal. (2009). | MR | Zbl
, , ,[6] Homogenization of -Laplacian in Perforated Domains With a Nonlocal Transmission Condition, C. R. Mécanique 337 (2009) 173-178.
, , ,[7] Stopping a Viscous Fluid by a Feedback Dissipative Field: Thermal Effects Without Phase Changing, in: Proceedings of Trends in Partial Differential Equations of Mathematical Physics, Progr. Nonlinear Differential Equations Appl., vol. 61, Birkhäuser, Basel, 2005, pp. 1-14. | MR | Zbl
, , ,[8] On Localization of Solutions of Elliptic Equations With Nonhomogeneous Anisotropic Degeneracy, Siberian Math. J. 46 (2005) 765-782. | EuDML | MR | Zbl
, ,[9] On Stationary Thermo-Rheological Viscous Flows, Ann. Univ. Ferrara Sez. Sci. Mat. 52 (2006) 19-36. | MR | Zbl
, ,[10] Elliptic Equations With Anisotropic Nonlinearity and Nonstandard Growth Conditions, in: Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 3, Elsevier, 2006, pp. 1-100, Chapter 1.
, ,[11] Elliptic Equations and Systems With Nonstandard Growth Conditions: Existence, Uniqueness and Localization Properties of Solutions, J. Nonlinear Anal. 65 (2006) 722-755. | MR
, ,[12] Nonlinear Dirichlet Problems in Randomly Perforated Domains, Rend. Mat. Appl. (7) 17 (1997) 163-186. | MR | Zbl
, , ,[13] The Motion of Fluids and Gases in Natural Strata, Nedra Publishing House, Moscow, 1984.
, , ,[14] Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., vol. 12, Clarendon Press, Oxford, 1998. | MR | Zbl
, ,[15] Un Terme Étrange Venu D'ailleurs I and II, Nonlinear Partial Differential Equations and Their Applications II (1983) 98-138. | MR | Zbl
, ,[16] Asymptotic Behaviour and Correctors for Dirichlet Problems in Perforated Domains With Homogeneous Monotone Operators, Ann. Sc. Norm. Super. Pisa 7 (1997) 765-803. | Numdam
, ,[17] Existence of Solutions for -Laplacian Dirichlet Problem, J. Nonlinear Anal. 52 (2003) 1843-1852. | MR | Zbl
, ,[18] The Dirichlet Energy Integral and Variable Exponents Sobolev Spaces With Zero Boundary Values, Potential Anal. 25 (2006) 205-222. | MR | Zbl
, , , ,[19] On Generalized Orlicz-Sobolev Space, Funct. Approx. Comment. Math. 4 (1976) 37-51. | MR | Zbl
,[20] Homogenization of the Dirichlet Variational Problems in Orlicz-Sobolev Spaces, Fields Inst. Commun. 25 (2000) 345-366. | MR | Zbl
, ,[21] On Spaces and , Czechoslovak Math. J. 41 (1991) 592-618. | MR | Zbl
, ,[22] Geometric Aspects of Averaging, Russian Math. Surveys 44 (1989) 91-144. | MR | Zbl
,[23] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973. | MR | Zbl
, ,[24] Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406. | MR | Zbl
, , ,[25] Boundary Value Problems With Fine-Grained Boundary, Mat. Sb. 65 (3) (1964) 458-472. | MR | Zbl
, ,[26] Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006. | MR | Zbl
, ,[27] Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. | MR | Zbl
,[28] Homogenization of Nonlinear Monotone Operators Beyond the Periodic Setting, Electron. J. Differential Equations 36 (2003) 1-24. | MR | Zbl
, ,[29] G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic, Dordrecht, 1997. | MR | Zbl
,[30] Mathematical Modelling of Electro-Rheological Fluids, Contin. Mech. Thermodyn. 13 (2001) 59-78. | Zbl
, ,[31] Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. | MR | Zbl
,[32] The Topology of the Space , Mat. Zametki 26 (1979) 613-632. | MR | Zbl
,[33] Methods of Investigation of Nonlinear Elliptic Boundary Value Problems, Nauka, Moscow, 1990. | MR
,[34] Lavrentiev Effect and the Averaging of Nonlinear Variational Problems, Differ. Equ. 27 (1991) 32-39. | MR | Zbl
,[35] On the Passage to the Limit in Nonlinear Variational Problems, Math. Sb. 183 (1992) 47-84. | MR | Zbl
,[36] Lavrentiev Phenomenon and Homogenization for Some Variational Problems, C. R. Acad. Sci. Paris Sér. I 316 (1993) 435-439. | MR | Zbl
,[37] On Lavrentiev's Phenomenon, Russ. J. Math. Phys. 3 (1995) 249-269. | MR | Zbl
,[38] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin/Heidelberg/New York, 1994. | MR | Zbl
, , ,[39] On Some Variational Problems, Russ. J. Math. Phys. 5 (1997) 105-116. | MR | Zbl
,Cité par Sources :