@article{AIHPC_2009__26_6_2253_0, author = {Wang, Baoxiang and Han, Lijia and Huang, Chunyan}, title = {Global {Well-Posedness} and {Scattering} for the {Derivative} {Nonlinear} {Schr\"odinger} {Equation} {With} {Small} {Rough} {Data}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2253--2281}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.03.004}, mrnumber = {2569894}, zbl = {1180.35492}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/} }
TY - JOUR AU - Wang, Baoxiang AU - Han, Lijia AU - Huang, Chunyan TI - Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2253 EP - 2281 VL - 26 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/ DO - 10.1016/j.anihpc.2009.03.004 LA - en ID - AIHPC_2009__26_6_2253_0 ER -
%0 Journal Article %A Wang, Baoxiang %A Han, Lijia %A Huang, Chunyan %T Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2253-2281 %V 26 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/ %R 10.1016/j.anihpc.2009.03.004 %G en %F AIHPC_2009__26_6_2253_0
Wang, Baoxiang; Han, Lijia; Huang, Chunyan. Global Well-Posedness and Scattering for the Derivative Nonlinear Schrödinger Equation With Small Rough Data. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2253-2281. doi : 10.1016/j.anihpc.2009.03.004. http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.004/
[1] Interpolation Spaces, Springer-Verlag, 1976. | Zbl
, ,[2] Large Data Local Solutions for the Derivative NLS Equation, arXiv:math.AP/0610092v1. | MR
, ,[3] Global Existence of Small Solutions to Semilinear Schrödinger Equations With Gauge Invariance, Publ. Res. Inst. Math. Sci. 31 (1995) 731-753. | MR | Zbl
,[4] The Initial Value Problem for Cubic Semilinear Schrödinger Equations With Gauge Invariance, Publ. Res. Inst. Math. Sci. 32 (1996) 445-471. | MR | Zbl
,[5] Illposedness of a Schrödinger Equation With Derivative Regularity, preprint, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1363&rep=rep1&type=pdf.
,[6] Maximal Functions Associated to Filtrations, J. Funct. Anal. 179 (2001) 406-425. | MR | Zbl
, ,[7] Local Smoothing Properties of Dispersive Equations, J. Amer. Math. Soc. 1 (1988) 413-446. | MR | Zbl
, ,[8] Exact Solutions of the Multidimensional Derivative Nonlinear Schrödinger Equation for Many-Body Systems Near Criticality, J. Phys. A: Math. Gen. 23 (1990) 4269-4288. | MR | Zbl
, ,[9] Schrödinger Flow of Maps Into Symplectic Manifolds, Sci. China Ser. A 41 (1998) 746-755. | MR | Zbl
, ,[10] Coherent Structures in Strongly Interacting Many-Body Systems: II. Classical Solutions and Quantum Fluctuations, J. Phys. A: Math. Gen. 22 (1989) 4895-4920. | MR | Zbl
, ,[11] H.G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983, in: Proc. Internat. Conf. on Wavelet and Applications, New Delhi Allied Publishers, India, 2003, pp. 99-140, http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf.
[12] Low-Regularity Schrödinger Maps, II: Global Well Posedness in Dimensions , Comm. Math. Phys. 271 (2007) 523-559, arXiv:math/0605209v1. | MR | Zbl
, ,[13] Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J. 40 (1991) 253-288. | MR | Zbl
, , ,[14] Small Solutions to Nonlinear Schrodinger Equation, Ann. Inst. H. Poincaré Sect. C 10 (1993) 255-288. | Numdam | MR | Zbl
, , ,[15] Smoothing Effects and Local Existence Theory for the Generalized Nonlinear Schrödinger Equations, Invent. Math. 134 (1998) 489-545. | MR | Zbl
, , ,[16] The Cauchy Problem for Quasi-Linear Schrodinger Equations, Invent. Math. 158 (2004) 343-388. | MR | Zbl
, , ,[17] The Genereal Quasilinear Untrahyperbolic Schrodinger Equation, Adv. Math. 206 (2006) 402-433. | MR | Zbl
, , , ,[18] Long-Time Behavior of Solutions to Nonlinear Evolution Equations, Arch. Ration. Mech. Anal. 78 (1982) 73-98. | MR | Zbl
,[19] Global Small Amplitude Solutions to Nonlinear Evolution Equations, Comm. Pure Appl. Math. 36 (1983) 133-141. | MR | Zbl
, ,[20] On the Davey-Stewartson Systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 523-548. | Numdam | MR | Zbl
, ,[21] Well-Posedness Results for the Generalized Benjamin-Ono Equation With Small Initial Data, J. Math. Pures Appl. 83 (2004) 277-311. | MR | Zbl
, ,[22] Global Existence of Small Classical Solutions to Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 303-311. | Numdam | MR | Zbl
, ,[23] Global Existence of Small Classical Solutions to Nonlinear Evolution Equations, J. Differential Equations 46 (1982) 409-423. | MR | Zbl
,[24] Regularity of Solutions to the Schrödinger Equations, Duke Math. J. 55 (1987) 699-715. | MR | Zbl
,[25] Global Strichartz Estimates for Nontrapping Perturbations of Laplacian, Comm. Partial Differential Equations 25 (2000) 2171-2183. | MR | Zbl
, ,[26] The Dilation Property of Modulation Spaces and Their Inclusion Relation With Besov Spaces, J. Funct. Anal. 248 (2007) 79-106. | MR | Zbl
, ,[27] Coherent Structures in Strongly Interacting Many-Body Systems: I. Derivation of Dynamics, J. Phys. A: Math. Gen. 22 (1989) 4877-4894. | MR | Zbl
, ,[28] Continuity Properties for Modulation Spaces, With Applications to Pseudo-Differential Calculus, I, J. Funct. Anal. 207 (2004) 399-429. | MR | Zbl
,[29] Theory of Function Spaces, Birkhäuser-Verlag, 1983. | MR | Zbl
,[30] Isometric Decomposition Operators, Function Spaces and Applications to Nonlinear Evolution Equations, J. Funct. Anal. 233 (2006) 1-39. | MR | Zbl
, , ,[31] The Global Cauchy Problem for the NLS and NLKG With Small Rough Data, J. Differential Equations 231 (2007) 36-73. | MR | Zbl
, ,[32] Frequency-Uniform Decomposition Method for the Generalized BO, KdV and NLS Equations, J. Differential Equations 239 (2007) 213-250. | MR
, ,[33] Global Well Posedness and Scattering for the Elliptic and Non-Elliptic Derivative Nonlinear Schrödinger Equations With Small Data, preprint, arXiv:0803.2634.
, ,[34] The Schrödinger Equation: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (1988) 874-878. | MR | Zbl
,Cité par Sources :