Generalised Twists, SO n, and the p-Energy Over a Space of Measure Preserving Maps
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1897-1924.
@article{AIHPC_2009__26_5_1897_0,
     author = {Shahrokhi-Dehkordi, M. S. and Taheri, A.},
     title = {Generalised {Twists,} $\mathrm {SO}\left(n\right)$, and the $p${-Energy} {Over} a {Space} of {Measure} {Preserving} {Maps}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1897--1924},
     publisher = {Elsevier},
     volume = {26},
     number = {5},
     year = {2009},
     doi = {10.1016/j.anihpc.2009.03.003},
     zbl = {1172.74021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.003/}
}
TY  - JOUR
AU  - Shahrokhi-Dehkordi, M. S.
AU  - Taheri, A.
TI  - Generalised Twists, $\mathrm {SO}\left(n\right)$, and the $p$-Energy Over a Space of Measure Preserving Maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 1897
EP  - 1924
VL  - 26
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.003/
DO  - 10.1016/j.anihpc.2009.03.003
LA  - en
ID  - AIHPC_2009__26_5_1897_0
ER  - 
%0 Journal Article
%A Shahrokhi-Dehkordi, M. S.
%A Taheri, A.
%T Generalised Twists, $\mathrm {SO}\left(n\right)$, and the $p$-Energy Over a Space of Measure Preserving Maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 1897-1924
%V 26
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.003/
%R 10.1016/j.anihpc.2009.03.003
%G en
%F AIHPC_2009__26_5_1897_0
Shahrokhi-Dehkordi, M. S.; Taheri, A. Generalised Twists, $\mathrm {SO}\left(n\right)$, and the $p$-Energy Over a Space of Measure Preserving Maps. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1897-1924. doi : 10.1016/j.anihpc.2009.03.003. http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.003/

[1] Ball J. M., Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403. | MR | Zbl

[2] Ball J. M., Discontinuous Equilibrium Solutions and Cavitation in Nonlinear Elasticity, Philos. Trans. Roy. Soc. Ser. A 306 (1982) 557-611. | MR | Zbl

[3] Bauman P., Owen N. C., Phillips D., Maximum Principles and a Priori Estimates for an Incompressible Material in Nonlinear Elasticity, Comm. Partial Differential Equations 17 (1992) 1185-1212. | MR | Zbl

[4] Bredon G., Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer, 1993. | MR | Zbl

[5] Cesari L., Optimization-Theory and Application, Applications of Mathematics, vol. 17, Springer, 1983. | MR | Zbl

[6] Evans L. C., Gariepy R. F., On the Partial Regularity of Energy-Minimizing, Area Preserving Maps, Calc. Var. 63 (1999) 357-372. | MR | Zbl

[7] Kato T., Perturbation Theory for Linear Operators, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, 1980. | Zbl

[8] Knops R. J., Stuart C. A., Quasiconvexity and Uniqueness of Equilibrium Solutions in Nonlinear Elasticity, Arch. Ration. Mech. Anal. 86 (3) (1984) 233-249. | MR | Zbl

[9] Post K., Sivaloganathan J., On Homotopy Conditions and the Existence of Multiple Equilibria in Finite Elasticity, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 595-614. | MR | Zbl

[10] Shahrokhi-Dehkordi M. S., Taheri A., Generalised Twists, Stationary Loops and the Dirichlet Energy on a Space of Measure Preserving Maps, Calc. Var. Partial Differential Equations 35 (2) (2009) 191-213. | MR | Zbl

[11] M.S. Shahrokhi-Dehkordi, A. Taheri, in preparation.

[12] Sivaloganathan J., Uniqueness of Regular and Singular Equilibria for Spherical Symmetric Problems of Nonlinear Elasticity, Arch. Ration. Mech. Anal. 96 (3) (1986) 97-136. | MR | Zbl

[13] Taheri A., Local Minimizers and Quasiconvexity - the Impact of Topology, Arch. Ration. Mech. Anal. 176 (3) (2005) 363-414. | MR | Zbl

[14] Taheri A., Minimizing the Dirichlet Energy on a Space of Measure Preserving Maps, Topol. Methods Nonlinear Anal. 33 (1) (2009) 179-204. | MR | Zbl

[15] A. Taheri, On a topological degree on the space of self-maps of annuli, submitted for publication.

Cité par Sources :