@article{AIHPC_2009__26_4_1533_0, author = {Colli, Eduardo and Do Nascimento, Marcio L. and Vargas, Edson}, title = {Decay of {Geometry} for {Fibonacci} {Critical} {Covering} {Maps} of the {Circle}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1533--1551}, publisher = {Elsevier}, volume = {26}, number = {4}, year = {2009}, doi = {10.1016/j.anihpc.2009.03.001}, mrnumber = {2542736}, zbl = {1173.37040}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.001/} }
TY - JOUR AU - Colli, Eduardo AU - Do Nascimento, Marcio L. AU - Vargas, Edson TI - Decay of Geometry for Fibonacci Critical Covering Maps of the Circle JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1533 EP - 1551 VL - 26 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.001/ DO - 10.1016/j.anihpc.2009.03.001 LA - en ID - AIHPC_2009__26_4_1533_0 ER -
%0 Journal Article %A Colli, Eduardo %A Do Nascimento, Marcio L. %A Vargas, Edson %T Decay of Geometry for Fibonacci Critical Covering Maps of the Circle %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1533-1551 %V 26 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.001/ %R 10.1016/j.anihpc.2009.03.001 %G en %F AIHPC_2009__26_4_1533_0
Colli, Eduardo; Do Nascimento, Marcio L.; Vargas, Edson. Decay of Geometry for Fibonacci Critical Covering Maps of the Circle. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 4, pp. 1533-1551. doi : 10.1016/j.anihpc.2009.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2009.03.001/
[1] Wild Cantor Attractors Exist, Ann. of Math. (2) 143 (1996) 97-130. | MR | Zbl
, , , ,[2] Existence of Absolutely Continuous Invariant Probability Measures for Multimodal Maps, in: Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, pp. 433-447, 17 (4) (2004) 749-782 (electronic). | MR
, ,[3] Large Derivatives, Backward Contraction and Invariant Densities for Interval Maps, Invent. Math. 172 (3) (2008) 509-533. | MR | Zbl
, , , ,[4] Iterated Maps on the Interval as Dynamical Systems, Prog. Phys., vol. 1, Birkhäuser Boston, Massachusetts, 1980. | MR | Zbl
, ,[5] Positive Liapunov Exponents and Absolute Continuity for Maps of the Interval, Ergodic Theory Dynam. Systems 3 (1) (1983) 13-46. | MR | Zbl
, ,[6] One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993. | MR | Zbl
, ,[7] Induced Expansions for Quadratic Polynomials, Ann. Sci. École Norm. Sup. (4) (1996) 399-482. | EuDML | Numdam | MR | Zbl
, ,[8] Generic Hyperbolicity in the Logistic Family, Ann. of Math. (2) (1997) 1-52. | MR | Zbl
, ,[9] The Real Fatou Conjecture, Ann. of Math. Stud., vol. 144, Princeton University Press, Princeton, 1998. | MR | Zbl
, ,[10] Metric Attractors for Smooth Unimodal Maps, Ann. of Math. (2) 159 (2) (2004) 725-740. | MR | Zbl
, , ,[11] Decay of Geometry for Unimodal Maps: Negative Schwarzian Case, Ann. of Math. (2) 161 (2) (2005) 613-677. | MR | Zbl
, , ,[12] Sensitive Dependence to Initial Conditions for One-Dimensional Maps, Comm. Math. Phys. 70 (2) (1979) 133-160. | MR | Zbl
,[13] Distortion of S-Unimodal Maps, Ann. of Math. (2) 132 (1) (1990) 71-130. | MR | Zbl
, ,[14] Some Remarks on Recent Results About S-Unimodal Maps, Ann. Inst. H. Poincaré Phys. Théor. 53 (4) (1990) 413-425. | Numdam | MR | Zbl
, ,[15] Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps, Comm. Math. Phys. 81 (1) (1981) 39-88. | MR | Zbl
,[16] Metric Properties of Non-Renormalizable S-Unimodal Maps I. Induced Expansion and Invariant Measures, Ergodic Theory Dynam. Systems 14 (4) (1994) 721-755. | MR | Zbl
, ,[17] Fibonacci Maps Re(Al)Visited, Ergodic Theory Dynam. Systems 15 (1) (1995) 99-120. | MR | Zbl
, ,[18] On Invariant Measures for Expanding Differentiable Mappings, Studia Math. 3 (1969) 83-92. | MR | Zbl
, ,[19] On the Existence of Invariant Measures for Piecewise Monotonic Transformations, Trans. Amer. Math. Soc. 186 (1974) 481-488, (1973). | MR | Zbl
, ,[20] Bounds for Maps of the Interval With One Reflecting Critical Point I, Fund. Math. 157 (2-3) (1998) 287-298. | MR | Zbl
,[21] Bounds for Maps of an Interval With One Critical Point of Inflection Type. II, Invent. Math. 141 (2) (2000) 399-465. | MR | Zbl
, ,[22] Universality of Critical Circle Covers, Comm. Math. Phys. 228 (2002) 371-399. | MR | Zbl
, ,[23] Combinatorics, Geometry and Attractors of Quasi-Quadratic Maps, Ann. of Math. (2) 140 (2) (1994) 347-404. | MR | Zbl
,[24] The Fibonacci Unimodal Map, J. Amer. Math. Soc. 6 (2) (1993) 425-457. | MR | Zbl
, ,[25] Dynamics of Quadratic Polynomials. I, II, Acta Math. 178 (2) (1997) 185-247, 247-297. | MR | Zbl
,[26] Distortion Results and Invariant Cantor Sets of Unimodal Maps, Ergodic Theory Dynam. Systems 14 (2) (1994) 331-349. | MR | Zbl
,[27] Invariant Measures for Typical Quadratic Maps, Astérisque 261 (2000) 239-252, xiii. | Numdam | MR | Zbl
, ,[28] On the Concept of Attractor, Comm. Math. Phys. 99 (2) (1985) 177-195. | MR | Zbl
,[29] Absolutely Continuous Measures for Certain Maps of an Interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 17-51. | Numdam | MR | Zbl
,[30] Double Standard Maps, Comm. Math. Phys. 273 (1) (2007) 37-65. | MR | Zbl
, ,[31] Invariant Measures Exist Under a Summability Condition for Unimodal Maps, Invent. Math. 105 (1) (1991) 123-136. | MR | Zbl
, ,[32] Applications Conservant Une Mesure Absolument Continue Par Raport À Dx Sur , Comm. Math. Phys. 55 (1) (1977) 47-51. | MR | Zbl
,[33] Decay of Geometry for Unimodal Maps: an Elementary Proof, Ann. of Math. (2) 163 (2) (2006) 383-404. | MR | Zbl
,[34] Hyperbolicity and Invariant Measures for General Interval Maps Satisfying the Misiurewicz Condition, Comm. Math. Phys. 128 (3) (1990) 437-495. | MR | Zbl
,[35] Real Bounds, Ergodicity and Negative Schwarzian for Multimodal Maps, J. Amer. Math. Soc. 17 (4) (2004) 749-782, (electronic). | MR | Zbl
, ,Cité par Sources :