@article{AIHPC_2009__26_5_1871_0, author = {Bournaveas, Nikolaos and Calvez, Vincent}, title = {Critical {Mass} {Phenomenon} for a {Chemotaxis} {Kinetic} {Model} {With} {Spherically} {Symmetric} {Initial} {Data}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1871--1895}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2009.02.001}, mrnumber = {2566714}, zbl = {1171.92003}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.02.001/} }
TY - JOUR AU - Bournaveas, Nikolaos AU - Calvez, Vincent TI - Critical Mass Phenomenon for a Chemotaxis Kinetic Model With Spherically Symmetric Initial Data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1871 EP - 1895 VL - 26 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.02.001/ DO - 10.1016/j.anihpc.2009.02.001 LA - en ID - AIHPC_2009__26_5_1871_0 ER -
%0 Journal Article %A Bournaveas, Nikolaos %A Calvez, Vincent %T Critical Mass Phenomenon for a Chemotaxis Kinetic Model With Spherically Symmetric Initial Data %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1871-1895 %V 26 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.02.001/ %R 10.1016/j.anihpc.2009.02.001 %G en %F AIHPC_2009__26_5_1871_0
Bournaveas, Nikolaos; Calvez, Vincent. Critical Mass Phenomenon for a Chemotaxis Kinetic Model With Spherically Symmetric Initial Data. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1871-1895. doi : 10.1016/j.anihpc.2009.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2009.02.001/
[1] Two-Dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions, Electron. J. Differential Equations 44 (2006), 32 pp. (electronic). | MR | Zbl
, , ,[2] On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions, J. Stat. Phys. 98 (2000) 743-773, J. Stat. Phys. 103 (2001) 1137-1138, erratum. | MR | Zbl
, , ,[3] Tanaka Theorem for Inelastic Maxwell Models, Comm. Math. Phys. 276 (2007) 287-314. | MR | Zbl
, ,[4] Global Existence for a Kinetic Model of Chemotaxis Via Dispersion and Strichartz Estimates, Comm. Partial Differential Equations 33 (2008) 79-95. | MR | Zbl
, , , ,[5] Global Existence for the Kinetic Chemotaxis Model Without Pointwise Memory Effects, and Including Internal Variables, Kinetic and Related Models 1 (2008) 29-48. | MR | Zbl
, ,[6] The Parabolic-Parabolic Keller-Segel Model in , Commun. Math. Sci. 6 (2008) 417-447. | MR | Zbl
, ,[7] Modified Keller-Segel System and Critical Mass for the Log Interaction Kernel, in: Stochastic Analysis and Partial Differential Equations, Contemp. Math., vol. 429, Amer. Math. Soc., Providence, RI, 2007, pp. 45-62. | MR | Zbl
, , ,[8] Estimations De Strichartz Pour Les Équations De Transport Cinétique, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 535-540. | MR | Zbl
, ,[9] Model Hierarchies for Cell Aggregation by Chemotaxis, Math. Models Methods Appl. Sci. 16 (2006) 1173-1197. | MR | Zbl
, , , , , ,[10] Kinetic Models for Chemotaxis and Their Drift-Diffusion Limits, Monatsh. Math. 142 (2004) 123-141. | MR | Zbl
, , , ,[11] A Class of Kinetic Models for Chemotaxis With Threshold to Prevent Overcrowding, Port. Math. (N.S.) 63 (2006) 227-250. | MR | Zbl
, ,[12] Virial Theorem and Dynamical Evolution of Self-Gravitating Brownian Particles in an Unbounded Domain. I, II, Phys. Rev. E 73 (2006) 066103-066104.
, ,[13] Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions, Milan J. Math. 72 (2004) 1-28. | MR | Zbl
, , ,[14] From Individual to Collective Behavior in Bacterial Chemotaxis, SIAM J. Appl. Math. 65 (2004) 361-391. | MR | Zbl
, ,[15] Taxis Equations for Amoeboid Cells, J. Math. Biol. 54 (2007) 847-885. | MR | Zbl
, ,[16] On a Quantum Boltzmann Equation for a Gas of Photons, J. Math. Pures Appl. 80 (2001) 471-515. | MR | Zbl
, ,[17] Global Behaviour of a Reaction-Diffusion System Modelling Chemotaxis, Math. Nachr. 195 (1998) 77-114. | MR | Zbl
, ,[18] The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996. | MR | Zbl
,[19] On Symmetric Solutions of the Relativistic Vlasov-Poisson System, Comm. Math. Phys. 101 (1985) 459-473. | MR | Zbl
, ,[20] Mesoscopic and Macroscopic Models for Mesenchymal Motion, J. Math. Biol. 53 (2006) 585-616. | MR | Zbl
,[21] On the Classical Solutions of the Initial Value Problem for the Unmodified Nonlinear Vlasov Equation. II. Special Cases, Math. Methods Appl. Sci. 4 (1982) 19-32. | MR | Zbl
,[22] Global Solutions of Nonlinear Transport Equations for Chemosensitive Movement, SIAM J. Math. Anal. 36 (2005) 1177-1199. | MR | Zbl
, , ,[23] On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis, Trans. Amer. Math. Soc. 329 (1992) 819-824. | MR | Zbl
, ,[24] On the Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System, C.R. Math. Acad. Sci. Paris, Ser. I 341 (2005) 269-274. | MR | Zbl
, , ,[25] The Boltzmann Equation for Bose-Einstein Particles: Velocity Concentration and Convergence to Equilibrium, J. Stat. Phys. 119 (2005) 1027-1067. | MR | Zbl
,[26] Cooling Process for Inelastic Boltzmann Equations for Hard Spheres. I. the Cauchy Problem, J. Stat. Phys. 124 (2006) 655-702. | MR | Zbl
, , ,[27] Blow-Up of Radially Symmetric Solutions to a Chemotaxis System, Adv. Math. Sci. Appl. 5 (1995) 581-601. | MR | Zbl
,[28] Models of Dispersal in Biological Systems, J. Math. Biol. 26 (1988) 263-298. | MR | Zbl
, , ,[29] The Diffusion Limit of Transport Equations. II. Chemotaxis Equations, SIAM J. Appl. Math. 62 (2002) 1222-1250. | MR | Zbl
, ,[30] Aggregation, Blowup, and Collapse: the ABCs of Taxis in Reinforced Random Walks, SIAM J. Appl. Math. 57 (1997) 1044-1081. | MR | Zbl
, ,[31] Kinetic Models for Superfluids: a Review of Mathematical Results, C. R. Phys. 5 (2004) 65-75.
,Cité par Sources :