@article{AIHPC_2009__26_5_1853_0, author = {Anker, Jean-Philippe and Pierfelice, Vittoria}, title = {Nonlinear {Schr\"odinger} {Equation} on {Real} {Hyperbolic} {Spaces}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1853--1869}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2009.01.009}, mrnumber = {2566713}, zbl = {1176.35166}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.009/} }
TY - JOUR AU - Anker, Jean-Philippe AU - Pierfelice, Vittoria TI - Nonlinear Schrödinger Equation on Real Hyperbolic Spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1853 EP - 1869 VL - 26 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.009/ DO - 10.1016/j.anihpc.2009.01.009 LA - en ID - AIHPC_2009__26_5_1853_0 ER -
%0 Journal Article %A Anker, Jean-Philippe %A Pierfelice, Vittoria %T Nonlinear Schrödinger Equation on Real Hyperbolic Spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1853-1869 %V 26 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.009/ %R 10.1016/j.anihpc.2009.01.009 %G en %F AIHPC_2009__26_5_1853_0
Anker, Jean-Philippe; Pierfelice, Vittoria. Nonlinear Schrödinger Equation on Real Hyperbolic Spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1853-1869. doi : 10.1016/j.anihpc.2009.01.009. http://www.numdam.org/articles/10.1016/j.anihpc.2009.01.009/
[1] Fourier Multipliers on Riemannian Symmetric Spaces of the Noncompact Type, Ann. of Math. 132 (1990) 597-628. | MR | Zbl
,[2] Spherical Analysis on Harmonic an Groups, Ann. Sc. Norm. Super. Pisa 33 (1996) 643-679. | Numdam | MR | Zbl
, , ,[3] The Nonlinear Schrödinger Equation on the Hyperbolic Space, Comm. Partial Differential Equations 32 (10) (2007) 1643-1677, arXiv:math/0406058. | MR | Zbl
,[4] Scattering Theory for Radial Nonlinear Schrödinger Equations on Hyperbolic Space, Geom. Funct. Anal. 18 (2) (2008) 367-399. | MR
, , ,[5] Fourier Transformation Restriction Phenomena for Certain Lattice Subsets and Application to the Nonlinear Evolution Equations I - Schrödinger Equations, Geom. Funct. Anal. 3 (2) (1993) 107-156. | MR | Zbl
,[6] Strichartz Inequalities and the Nonlinear Schrödinger Equation on Compact Manifolds, Amer. J. Math. 126 (3) (2004) 569-605. | MR | Zbl
, , ,[7] Herz's “principe De Majoratio” and the Kunze-Stein Phenomenon, in: Harmonic Analysis and Number Theory, Montreal, 1996, CMS Conf. Proc., vol. 21, Amer. Math. Soc., 1997, pp. 73-88. | MR | Zbl
,[8] P. Gérard, V. Pierfelice, Nonlinear Schrödinger equation on four-dimensional compact manifolds, Bull. Soc. Math. Fr., in press.
[9] Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1) (1995) 50-68. | MR | Zbl
, ,[10] Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978, Amer. Math. Soc., 2001. | MR | Zbl
,[11] Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions), Academic Press, 1984, Amer. Math. Soc., 2002. | MR | Zbl
,[12] Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., 1994. | MR | Zbl
,[13] An Endpoint Estimate for the Kunze-Stein Phenomenon and Related Maximal Operators, Ann. of Math. (2) 152 (1) (2000) 259-275. | MR | Zbl
,[14] A.D. Ionescu, G. Staffilani, Semilinear Schrödinger flows on hyperbolic spaces - scattering in , preprint, 2008.
[15] On Nonlinear Schrödinger Equations, Ann. Inst. H. Poincaré (A) Phys. Theor. 46 (1) (1987) 113-129. | Numdam | MR | Zbl
,[16] Endpoint Strichartz Estimates, Amer. J. Math. 120 (5) (1998) 955-980. | MR | Zbl
, ,[17] Weighted Strichartz Estimates for the Radial Perturbed Schrödinger Equation on the Hyperbolic Space, Manuscripta Math. 120 (4) (2006) 377-389. | MR | Zbl
,[18] Weighted Strichartz Estimates for the Schrödinger and Wave Equations on Damek-Ricci Spaces, Math. Z. 260 (2) (2008) 377-392. | MR | Zbl
,[19] Global Well-Posedness and Scattering for the Defocusing Mass-Critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions, Duke Math. J. 140 (1) (2007) 165-202. | MR
, , ,Cité par Sources :