@article{AIHPC_2009__26_5_1717_0, author = {Bandyopadhyay, S. and Dacorogna, B.}, title = {On the {Pullback} {Equation} ${\phi }^{*}\left(g\right)=f$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1717--1741}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.10.006}, mrnumber = {2566707}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.10.006/} }
TY - JOUR AU - Bandyopadhyay, S. AU - Dacorogna, B. TI - On the Pullback Equation ${\phi }^{*}\left(g\right)=f$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1717 EP - 1741 VL - 26 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.10.006/ DO - 10.1016/j.anihpc.2008.10.006 LA - en ID - AIHPC_2009__26_5_1717_0 ER -
%0 Journal Article %A Bandyopadhyay, S. %A Dacorogna, B. %T On the Pullback Equation ${\phi }^{*}\left(g\right)=f$ %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1717-1741 %V 26 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.10.006/ %R 10.1016/j.anihpc.2008.10.006 %G en %F AIHPC_2009__26_5_1717_0
Bandyopadhyay, S.; Dacorogna, B. On the Pullback Equation ${\phi }^{*}\left(g\right)=f$. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1717-1741. doi : 10.1016/j.anihpc.2008.10.006. http://www.numdam.org/articles/10.1016/j.anihpc.2008.10.006/
[1] Manifolds, Tensor Analysis, and Applications, second ed., Springer-Verlag, New York, 1988. | MR | Zbl
, , ,[2] Formes-Volume Sur Les Variétés À Bord, Enseignement Math. 20 (1974) 127-131. | MR | Zbl
,[3] Separated Nets in Euclidean Space and Jacobian of BiLipschitz Maps, Geom. Funct. Anal. 8 (1998) 273-282. | MR | Zbl
, ,[4] A Relaxation Theorem and Its Applications to the Equilibrium of Gases, Arch. Ration. Mech. Anal. 77 (1981) 359-386. | MR | Zbl
,[5] Existence and Regularity of Solutions of With Dirichlet Boundary Conditions, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 67-82. | MR | Zbl
,[6] Direct Methods in the Calculus of Variations, second ed., Springer-Verlag, New York, 2007. | MR | Zbl
,[7] On a Partial Differential Equation Involving the Jacobian Determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 1-26. | Numdam | MR | Zbl
, ,[8] Harmonic Tensors on Riemannian Manifolds With Boundary, Ann. of Math. 56 (1952) 128-156. | MR | Zbl
, ,[9] The Boundary Problems of Physical Geodesy, Arch. Ration. Mech. Anal. 62 (1976) 1-52. | MR | Zbl
,[10] Potentialtheoretische Randwertprobleme Bei Tensorfeldern Beliebiger Dimension Und Beliebigen Ranges, Arch. Ration. Mech. Anal. 47 (1972) 59-80. | MR | Zbl
,[11] Introduction to Symplectic Topology, second ed., Oxford Science Publications, Oxford, 1998. | MR | Zbl
, ,[12] Lipschitz Maps and Nets in Euclidean Space, Geom. Funct. Anal. 8 (1998) 304-314. | MR | Zbl
,[13] On the Volume Elements on a Manifold, Trans. Amer. Math. Soc. 120 (1965) 286-294. | MR | Zbl
,[14] Harmonische Funktionen Und Jacobi-Determinanten Von Diffeomorphismen, Comment. Math. Helv. 47 (1972) 397-408. | MR | Zbl
,[15] Resolutions of the Prescribed Volume Form Equation, NoDEA Nonlinear Differential Equations Appl. 3 (1996) 323-369. | MR | Zbl
, ,[16] L. Tartar, unpublished, 1978.
[17] Partial Differential Equations, Vol. 1, Springer-Verlag, New York, 1996. | Zbl
,[18] Prescribing the Jacobian Determinant in Sobolev Spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 275-296. | Numdam | MR | Zbl
,[19] Note on Smoothing Symplectic and Volume Preserving Diffeomorphisms, in: Lecture Notes in Mathematics, vol. 597, Springer-Verlag, Berlin, 1976, pp. 828-855. | MR | Zbl
,Cité par Sources :