@article{AIHPC_2009__26_5_1585_0, author = {Scheven, Christoph}, title = {An {Optimal} {Partial} {Regularity} {Result} for {Minimizers} of an {Intrinsically} {Defined} {Second-Order} {Functional}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1585--1605}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.07.002}, mrnumber = {2566701}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/} }
TY - JOUR AU - Scheven, Christoph TI - An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1585 EP - 1605 VL - 26 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/ DO - 10.1016/j.anihpc.2008.07.002 LA - en ID - AIHPC_2009__26_5_1585_0 ER -
%0 Journal Article %A Scheven, Christoph %T An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1585-1605 %V 26 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/ %R 10.1016/j.anihpc.2008.07.002 %G en %F AIHPC_2009__26_5_1585_0
Scheven, Christoph. An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1585-1605. doi : 10.1016/j.anihpc.2008.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/
[1] A Note on Riesz Potentials, Duke Math. J. 42 (1975) 765-778. | MR | Zbl
,[2] Fonctions Quasi Affines Et Minimisation De , C. R. Acad. Sci. Paris Sér. I 306 (1988) 355-358. | MR
, ,[3] A Regularity Theory of Biharmonic Maps, Comm. Pure Appl. Math. 52 (9) (1999) 1113-1137. | MR | Zbl
, , ,[4] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, submitted for publication.
[5] Inequalities, Cambridge University Press, 1964. | JFM | Zbl
, , ,[6] Foundations of Differential Geometry II, Interscience Publishers, New York, 1969. | Zbl
, ,[7] Geometry of Sets and Measures in Euclidean Spaces - Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. | MR | Zbl
,[8] A Short Survey on Biharmonic Maps Between Riemannian Manifolds, Rev. Un. Mat. Argentina 47 (2006) 1-22. | MR | Zbl
, ,[9] The Blow-Up Behavior of the Biharmonic Map Heat Flow in Four Dimensions, IMRP Int. Math. Res. Pap. 2005 (2005) 351-402. | MR | Zbl
,[10] R. Moser, A variational problem pertaining to biharmonic maps, preprint. | MR | Zbl
[11] Lectures on Geometric Measure Theory, Proc. of Centre for Math. Anal., vol. 3, Australian National Univ., 1983. | MR | Zbl
,[12] Analytic Aspects of the Harmonic Map Problem, in: (Ed.), Seminar on Nonlinear Partial Differential Equations, Springer, 1984, pp. 321-358. | MR | Zbl
,[13] Dimension Reduction for the Singular Set of Biharmonic Maps, Adv. Calc. Var. 1 (2008) 53-91. | MR | Zbl
,[14] On Biharmonic Maps and Their Generalizations, Calc. Var. 18 (4) (2003) 401-432. | MR | Zbl
,[15] Partial Regularity for Biharmonic Maps, revisited, Calc. Var. 33 (2) (2008) 249-262. | MR | Zbl
,[16] A Singularity Removal Theorem for Yang-Mills Fields in Higher Dimensions, J. Amer. Math. Soc. 17 (2004) 557-593. | MR | Zbl
, ,[17] Remarks on Biharmonic Maps Into Spheres, Calc. Var. 21 (3) (2004) 221-242. | MR | Zbl
,[18] Biharmonic Maps From Into a Riemannian Manifold, Math. Z. 247 (1) (2004) 65-87. | MR | Zbl
,[19] Stationary Biharmonic Maps From Into a Riemannian Manifold, Comm. Pure Appl. Math. 57 (4) (2004) 419-444. | MR | Zbl
,[20] Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989. | MR | Zbl
,Cité par Sources :