An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1585-1605.
@article{AIHPC_2009__26_5_1585_0,
     author = {Scheven, Christoph},
     title = {An {Optimal} {Partial} {Regularity} {Result} for {Minimizers} of an {Intrinsically} {Defined} {Second-Order} {Functional}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1585--1605},
     publisher = {Elsevier},
     volume = {26},
     number = {5},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.07.002},
     mrnumber = {2566701},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/}
}
TY  - JOUR
AU  - Scheven, Christoph
TI  - An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 1585
EP  - 1605
VL  - 26
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/
DO  - 10.1016/j.anihpc.2008.07.002
LA  - en
ID  - AIHPC_2009__26_5_1585_0
ER  - 
%0 Journal Article
%A Scheven, Christoph
%T An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 1585-1605
%V 26
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/
%R 10.1016/j.anihpc.2008.07.002
%G en
%F AIHPC_2009__26_5_1585_0
Scheven, Christoph. An Optimal Partial Regularity Result for Minimizers of an Intrinsically Defined Second-Order Functional. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1585-1605. doi : 10.1016/j.anihpc.2008.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2008.07.002/

[1] Adams D., A Note on Riesz Potentials, Duke Math. J. 42 (1975) 765-778. | MR | Zbl

[2] Avellaneda M., Lin F. H., Fonctions Quasi Affines Et Minimisation De u p , C. R. Acad. Sci. Paris Sér. I 306 (1988) 355-358. | MR

[3] Chang A., Wang L., Yang P., A Regularity Theory of Biharmonic Maps, Comm. Pure Appl. Math. 52 (9) (1999) 1113-1137. | MR | Zbl

[4] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, submitted for publication.

[5] Hardy G., Littlewood J., Pólya G., Inequalities, Cambridge University Press, 1964. | JFM | Zbl

[6] Kobayashi S., Nomizu K., Foundations of Differential Geometry II, Interscience Publishers, New York, 1969. | Zbl

[7] Mattila P., Geometry of Sets and Measures in Euclidean Spaces - Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. | MR | Zbl

[8] Montaldo S., Oniciuc C., A Short Survey on Biharmonic Maps Between Riemannian Manifolds, Rev. Un. Mat. Argentina 47 (2006) 1-22. | MR | Zbl

[9] Moser R., The Blow-Up Behavior of the Biharmonic Map Heat Flow in Four Dimensions, IMRP Int. Math. Res. Pap. 2005 (2005) 351-402. | MR | Zbl

[10] R. Moser, A variational problem pertaining to biharmonic maps, preprint. | MR | Zbl

[11] Simon L., Lectures on Geometric Measure Theory, Proc. of Centre for Math. Anal., vol. 3, Australian National Univ., 1983. | MR | Zbl

[12] Schoen R., Analytic Aspects of the Harmonic Map Problem, in: Chern S. S. (Ed.), Seminar on Nonlinear Partial Differential Equations, Springer, 1984, pp. 321-358. | MR | Zbl

[13] Scheven C., Dimension Reduction for the Singular Set of Biharmonic Maps, Adv. Calc. Var. 1 (2008) 53-91. | MR | Zbl

[14] Strzelecki P., On Biharmonic Maps and Their Generalizations, Calc. Var. 18 (4) (2003) 401-432. | MR | Zbl

[15] Struwe M., Partial Regularity for Biharmonic Maps, revisited, Calc. Var. 33 (2) (2008) 249-262. | MR | Zbl

[16] Tao T., Tian G., A Singularity Removal Theorem for Yang-Mills Fields in Higher Dimensions, J. Amer. Math. Soc. 17 (2004) 557-593. | MR | Zbl

[17] Wang C., Remarks on Biharmonic Maps Into Spheres, Calc. Var. 21 (3) (2004) 221-242. | MR | Zbl

[18] Wang C., Biharmonic Maps From R 4 Into a Riemannian Manifold, Math. Z. 247 (1) (2004) 65-87. | MR | Zbl

[19] Wang C., Stationary Biharmonic Maps From R m Into a Riemannian Manifold, Comm. Pure Appl. Math. 57 (4) (2004) 419-444. | MR | Zbl

[20] Ziemer W., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989. | MR | Zbl

Cité par Sources :