@article{AIHPC_2008__25_4_803_0, author = {Caselles, V. and Chambolle, A. and Moll, S. and Novaga, M.}, title = {A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {803--832}, publisher = {Elsevier}, volume = {25}, number = {4}, year = {2008}, doi = {10.1016/j.anihpc.2008.04.003}, mrnumber = {2436794}, zbl = {1144.52002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.04.003/} }
TY - JOUR AU - Caselles, V. AU - Chambolle, A. AU - Moll, S. AU - Novaga, M. TI - A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 803 EP - 832 VL - 25 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.04.003/ DO - 10.1016/j.anihpc.2008.04.003 LA - en ID - AIHPC_2008__25_4_803_0 ER -
%0 Journal Article %A Caselles, V. %A Chambolle, A. %A Moll, S. %A Novaga, M. %T A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 803-832 %V 25 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.04.003/ %R 10.1016/j.anihpc.2008.04.003 %G en %F AIHPC_2008__25_4_803_0
Caselles, V.; Chambolle, A.; Moll, S.; Novaga, M. A characterization of convex calibrable sets in ${R}^{N}$ with respect to anisotropic norms. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 803-832. doi : 10.1016/j.anihpc.2008.04.003. http://www.numdam.org/articles/10.1016/j.anihpc.2008.04.003/
[1] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Preprint CVGMT, Scuola Normale di Pisa, 2007. | MR | Zbl
[2] A characterization of convex calibrable sets in , Math. Ann. 332 (2) (2005) 329-366. | MR | Zbl
, , ,[3] Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, Interfaces Free Bound. 7 (1) (2005) 29-53. | MR | Zbl
, , ,[4] A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1) (1994) 91-133. | Numdam | MR | Zbl
, ,[5] Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19 (1995) 191-246. | MR | Zbl
,[6] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. | MR | Zbl
, , ,[7] The Dirichlet problem for the total variation flow, J. Funct. Anal. 180 (2) (2001) 347-403. | MR | Zbl
, , , ,[8] A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana 18 (1) (2002) 135-185. | MR | Zbl
, , ,[9] Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223, Birkhäuser Verlag, Basel, 2004. | MR | Zbl
, , ,[10] Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1984) 293-318, 1983. | MR | Zbl
,[11] Bounds for vertical points of solutions of prescribed mean curvature type equations. I, Proc. Roy. Soc. Edinburgh Sect. A 112 (1-2) (1989) 15-32. | MR | Zbl
, ,[12] The curvature of a set with finite area, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (2) (1994) 149-159. | MR | Zbl
,[13] Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal. 179 (1) (2006) 109-152. | MR | Zbl
, , , ,[14] The total variation flow in , J. Differential Equations 184 (2) (2002) 475-525. | MR | Zbl
, , ,[15] Approximation and comparison for nonsmooth anisotropic motion by mean curvature in , Math. Models Methods Appl. Sci. 10 (1) (2000) 1-10. | MR | Zbl
, ,[16] Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound. 1 (1) (1999) 39-55. | MR | Zbl
, , ,[17] Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound. 3 (4) (2001) 415-446. | MR | Zbl
, , ,[18] On a crystalline variational problem. I. First variation and global regularity, Arch. Ration. Mech. Anal. 157 (3) (2001) 165-191. | MR | Zbl
, , ,[19] On a crystalline variational problem. II. BV regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal. 157 (3) (2001) 193-217. | MR | Zbl
, , ,[20] Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (3) (1996) 537-566. | MR | Zbl
, ,[21] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5, North-Holland Publishing Co., Amsterdam, 1973, Notas de Matemática (50). | MR | Zbl
,[22] The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/1974) 831-844. | MR | Zbl
, ,[23] Anisotropic curvature-driven flow of convex sets, Nonlinear Anal. 65 (8) (2006) 1547-1577. | MR | Zbl
, ,[24] Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (1) (2007) 77-90. | MR
, , ,[25] An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2) (2004) 195-218. | MR | Zbl
,[26] An algorithm for total variation minimization and applications, J. Math. Imaging Vision 20 (1-2) (2004) 89-97, Special issue on mathematics and image analysis. | MR
,[27] On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math. 46 (2) (1978) 111-137. | MR | Zbl
,[28] Variational mean curvatures, Rend. Sem. Mat. Univ. Politec. Torino 52 (1) (1994) 1-28. | MR | Zbl
, ,[29] Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (4) (2003) 659-667. | MR | Zbl
, ,[30] Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (1) (2006) 103-118. | MR | Zbl
, ,[31] Capillary surface convexity above convex domains, Indiana Univ. Math. J. 32 (1) (1983) 73-81. | MR | Zbl
,[32] Equations of mean curvature type with contact angle boundary conditions, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 175-201. | MR | Zbl
, ,[33] Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations 30 (3) (1978) 340-364. | MR | Zbl
, ,[34] Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, 2001, The fifteenth Dean Jacqueline B. Lewis memorial lectures. | MR | Zbl
,[35] The anisotropic total variation flow, Math. Ann. 332 (1) (2005) 177-218. | MR | Zbl
,[36] Isoperimetric regions in rotationally symmetric convex bodies, Indiana Univ. Math. J. 52 (5) (2003) 1201-1214. | MR | Zbl
,[37] Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. | MR | Zbl
,[38] Existence and regularity of a capillary surface with prescribed contact angle, Arch. Ration. Mech. Anal. 61 (1) (1976) 19-34. | MR | Zbl
, ,[39] Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (4) (1997) 653-677. | MR | Zbl
, ,Cité par Sources :