@article{AIHPC_2009__26_3_745_0, author = {Keraani, Sahbi and Vargas, Ana}, title = {A {Smoothing} {Property} for the ${L}^{2}${-Critical} {NLS} {Equations} and an {Application} to {Blowup} {Theory}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {745--762}, publisher = {Elsevier}, volume = {26}, number = {3}, year = {2009}, doi = {10.1016/j.anihpc.2008.03.001}, mrnumber = {2526400}, zbl = {1178.35313}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/} }
TY - JOUR AU - Keraani, Sahbi AU - Vargas, Ana TI - A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 745 EP - 762 VL - 26 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/ DO - 10.1016/j.anihpc.2008.03.001 LA - en ID - AIHPC_2009__26_3_745_0 ER -
%0 Journal Article %A Keraani, Sahbi %A Vargas, Ana %T A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 745-762 %V 26 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/ %R 10.1016/j.anihpc.2008.03.001 %G en %F AIHPC_2009__26_3_745_0
Keraani, Sahbi; Vargas, Ana. A Smoothing Property for the ${L}^{2}$-Critical NLS Equations and an Application to Blowup Theory. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 745-762. doi : 10.1016/j.anihpc.2008.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2008.03.001/
[1] Mass Concentration Phenomena for the -Critical Nonlinear Schrödinger Equation, Trans. Amer. Math. Soc. 359 (2007) 5257-5282. | MR | Zbl
, ,[2] Interpolation Spaces. an Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin, New York, 1976. | MR | Zbl
, ,[3] Calcul Symbolique Et Propagation Des Singularités Pour Les Équations Aux Dérivées Partielles Non Linéaires, Ann. Sci. École Norm. Sup. (4) 14 (2) (1981) 209-246. | Numdam | MR | Zbl
,[4] On the Restriction and the Multiplier Problem in , in: Geometrics Aspects of Functional Analysis, Springer Lecture Notes in Math., vol. 1469, 1991, pp. 179-191. | MR | Zbl
,[5] Refinements of Strichartz Inequality and Applications to 2D-NLS With Critical Nonlinearity, IMRN 5 (1998) 253-283. | MR | Zbl
,[6] Quadratic Oscillations in NLS II. the -Critical Case, Trans. Amer. Math. Soc. 359 (1) (2007) 33-62. | MR | Zbl
, ,[7] Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003, American Mathematical Society, Providence, RI. | MR | Zbl
,[8] Almost Conservation Laws and Global Rough Solutions to a Nonlinear Schrödinger Equation, Math. Res. Lett. 9 (2002) 659-682. | MR | Zbl
, , , , ,[9] Ground State Mass Concentration in the -Critical Nonlinear Schrödinger Equation Below , Math. Res. Lett. 12 (2-3) (2005) 357-375. | MR | Zbl
, , , ,[10] Local Smoothing Properties of Dispersive Equations, J. Amer. Math. Soc. 1 (1) (April 1988). | MR | Zbl
, ,[11] The Kakeya Maximal Function and the Spherical Summation Multipliers, Amer. J. Math. 99 (1) (1977) 1-22. | MR | Zbl
,[12] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness and polynomial bounds for the -critical nonlinear Schrödinger equation in , Preprint.
[13] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness for the -critical nonlinear Schrödinger equation in higher dimensions, Preprint, 2006. | Zbl
[14] Y. Fang, M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in , Preprint, 2006. | MR | Zbl
[15] Inequalities for Strongly Singular Convolution Operators, Acta Math. 124 (1970) 9-36. | MR | Zbl
,[16] A Note on Spherical Summation Multipliers, Israel J. Math. 15 (1973) 44-52. | MR | Zbl
,[17] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain) (in French. French summary) (The Cauchy problem for periodic semilinear PDE in space variables (after Bourgain)), Seminaire Bourbaki, vol. 1994/95. | Numdam | Zbl
[18] Blowup Theory for the Critical Nonlinear Schrödinger Equations Revisited, Int. Math. Res. Not. 5 (2005) 2815-2828. | MR | Zbl
, ,[19] Remarks on the Blowup for the -Critical Nonlinear Schrödinger Equations, SIAM J. Math. Anal. 38 (4) (2006) 1035-1047. | MR | Zbl
, ,[20] On the Blow Up Phenomenon of the Critical Nonlinear Schrödinger Equation, J. Funct. Anal. 235 (1) (2006) 171-192. | MR | Zbl
,[21] Determination of Blowup Solutions With Minimal Mass for Nonlinear Schrödinger Equations With Critical Power, Duke Math. J. 69 (2) (1993) 203-254. | MR | Zbl
,[22] Construction of Solutions With Exactly K Blowup Points for Nonlinear Schrödinger Equations With Critical Nonlinearity, Commun. Math. Phys. 129 (2) (1990) 223-240. | MR | Zbl
,[23] Blow-Up Phenomena for Critical Nonlinear Schrödinger and Zakharov Equations, in: Proceedings of the International Congress of Mathematicians, Vol. III, Berlin, 1998, Doc. Math., Extra vol. III, 1998, pp. 57-66. | MR | Zbl
,[24] On a Sharp Lower Bound on the Blow-Up Rate for the Critical Nonlinear Schrödinger Equation, J. Amer. Math. Soc. 19 (1) (2006) 37-90. | MR | Zbl
, ,[25] On Universality of Blow-Up Profile for Critical Nonlinear Schrödinger Equation, Invent. Math. 156 (3) (2004) 565-672. | MR | Zbl
, ,[26] Concentration of Blowup Solutions for the Nonlinear Schröinger Equation With Critical Power Nonlinearity, J. Differential Equations 84 (2) (1990) 205-214. | MR | Zbl
, ,[27] Compactness at Blowup Time for Solutions of the Critical Nonlinear Schrödinger Equations in 2D, IMRN 8 (1998) 399-425. | MR | Zbl
, ,[28] Schrödinger Maximal Function and Restriction Properties of the Fourier Transform, Int. Math. Res. Not. 16 (1996) 793-815. | MR | Zbl
, , ,[29] Restriction Theorems and Maximal Operators Related to Oscillatory Integrals in , Duke Math. J. 96 (1999) 547-574. | MR | Zbl
, , ,[30] Regularity of Solutions to the Schrödinger Equations, Duke Math. J. 55 (1987) 699-715. | MR | Zbl
,[31] The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. | MR | Zbl
, ,[32] A Sharp Bilinear Restrictions Estimate for Paraboloids, Geom. Funct. Anal. 13 (6) (2003) 1359-1384. | MR | Zbl
,[33] Global Well-Posedness and Scattering for the Mass-Critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions, Duke Math. J. 140 (1) (2007) 165-202. | MR
, , ,[34] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, in press. | Zbl
[35] Mass Concentration Phenomenon for the Quintic Nonlinear Schrödinger Equation in 1D, SIAM J. Math. Anal. 37 (6) (2006) 1923-1946, (electronic). | MR | Zbl
,[36] Schrödinger Equation: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (4) (1988) 874-878. | MR | Zbl
,[37] On the Blowup for the -Critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions Below the Energy Class, SIAM J. Math. Anal. 39 (1) (2007) 34-56. | MR | Zbl
, ,[38] Nonlinear Schrödinger Equations and Sharp Interpolation Estimates, Commun. Math. Phys. 87 (1983) 567. | MR | Zbl
,Cité par Sources :