Killing Graphs With Prescribed Mean Curvature and Riemannian Submersions
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 763-775.
@article{AIHPC_2009__26_3_763_0,
     author = {Dajczer, M. and De Lira, J. H.},
     title = {Killing {Graphs} {With} {Prescribed} {Mean} {Curvature} and {Riemannian} {Submersions}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {763--775},
     publisher = {Elsevier},
     volume = {26},
     number = {3},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.02.002},
     mrnumber = {2526401},
     zbl = {1169.53046},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2008.02.002/}
}
TY  - JOUR
AU  - Dajczer, M.
AU  - De Lira, J. H.
TI  - Killing Graphs With Prescribed Mean Curvature and Riemannian Submersions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 763
EP  - 775
VL  - 26
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2008.02.002/
DO  - 10.1016/j.anihpc.2008.02.002
LA  - en
ID  - AIHPC_2009__26_3_763_0
ER  - 
%0 Journal Article
%A Dajczer, M.
%A De Lira, J. H.
%T Killing Graphs With Prescribed Mean Curvature and Riemannian Submersions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 763-775
%V 26
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2008.02.002/
%R 10.1016/j.anihpc.2008.02.002
%G en
%F AIHPC_2009__26_3_763_0
Dajczer, M.; De Lira, J. H. Killing Graphs With Prescribed Mean Curvature and Riemannian Submersions. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 763-775. doi : 10.1016/j.anihpc.2008.02.002. http://www.numdam.org/articles/10.1016/j.anihpc.2008.02.002/

[1] Abresch U., Rosenberg H., Generalized Hopf Differentials, Mat. Contemp. 28 (2005) 1-28. | MR | Zbl

[2] Alias L., Dajczer M., Ripoll J., A Bernstein-Type Theorem for Riemannian Manifolds With a Killing Field, Ann. Glob. Anal. Geom. 31 (2007) 363-373. | MR | Zbl

[3] Alias L., Dajczer M., Rosenberg H., The Dirichlet Problem for CMC Surfaces in Heisenberg Space, Calc. Var. Partial Differ. Equations 30 (2007) 513-522. | MR

[4] M. Dajczer, P. Hinojosa, J.H. de Lira, Killing graphs with prescribed mean curvature, Calc. Var. Partial Differ. Equations, in press. | Zbl

[5] Dajczer M., Ripoll J., An Extension of a Theorem of Serrin to Graphs in Warped Products, J. Geom. Anal. 15 (2005) 193-205. | MR | Zbl

[6] Daniel B., Isometric Immersions Into 3-Dimensional Homogeneous Manifolds, Comment. Math. Helv. 82 (2007) 87-131. | MR | Zbl

[7] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, Preprint.

[8] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg, 2001. | MR | Zbl

[9] Korevaar N., An Easy Proof of the Interior Gradient Bound for Solutions of the Prescribed Mean Curvature Equation, in: Proc. Symp. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl

[10] Li Y. Y., Nirenberg L., Regularity of the Distance Function to the Boundary, Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl. 123 (2005) 257-264. | MR

[11] Morrey C., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. | MR | Zbl

[12] O'Neill B., The Fundamental Equations of a Submersion, Michigan Math. J. 13 (1966) 459-469. | MR | Zbl

[13] Spruck J., Interior Gradient Estimates and Existence Theorem for Constant Mean Curvature Graphs, Pure Appl. Math. Q. 3 (2007) 785-800. | MR | Zbl

Cité par Sources :