@article{AIHPC_2008__25_4_725_0, author = {Flori, F. and Orenga, P. and Peybernes, M.}, title = {An existence result for a free boundary shallow water model using a lagrangian scheme}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {725--741}, publisher = {Elsevier}, volume = {25}, number = {4}, year = {2008}, doi = {10.1016/j.anihpc.2007.05.005}, mrnumber = {2436791}, zbl = {1140.76364}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.005/} }
TY - JOUR AU - Flori, F. AU - Orenga, P. AU - Peybernes, M. TI - An existence result for a free boundary shallow water model using a lagrangian scheme JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 725 EP - 741 VL - 25 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.005/ DO - 10.1016/j.anihpc.2007.05.005 LA - en ID - AIHPC_2008__25_4_725_0 ER -
%0 Journal Article %A Flori, F. %A Orenga, P. %A Peybernes, M. %T An existence result for a free boundary shallow water model using a lagrangian scheme %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 725-741 %V 25 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.005/ %R 10.1016/j.anihpc.2007.05.005 %G en %F AIHPC_2008__25_4_725_0
Flori, F.; Orenga, P.; Peybernes, M. An existence result for a free boundary shallow water model using a lagrangian scheme. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 725-741. doi : 10.1016/j.anihpc.2007.05.005. http://www.numdam.org/articles/10.1016/j.anihpc.2007.05.005/
[1] Modelling of convective phenomena in forest fire, Rev. R. Acad. Cien. Serie A Mat. 96 (3) (2002) 299-313. | MR
, , ,[2] Large-time regularity of viscous surface waves, Arch. Rational Mech. 84 (1984) 307-352. | MR | Zbl
,[3] Some smoothness and uniqueness results for a shallow water problem, Adv. Differential Equations 3 (1) (1998) 155-176. | MR | Zbl
, ,[4] Elasticité tridimensionnelle, Collection Recherches en Mathématiques Appliquées, Masson, 1986. | MR | Zbl
,[5] Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Collection C.E.A., Masson, 1984. | Zbl
, ,[6] Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Comput. 14 (2) (2001) 523-538. | MR | Zbl
, , , ,[7] Arbitrary Lagrangian-Eulerian formulation for fluid-multi rigid bodies interaction problems, Comput. Methods Appl. Mech. Engrg. 190 (24-25) (2001) 3171-3188. | Zbl
, , , ,[8] Bornes sur la densité pour un problème de Navier-Stokes compressible à frontière variable avec conditions aux limites de Dirichlet, C. R. Acad. Sci. Paris Ser. I 339 (2004) 251-256. | MR | Zbl
, ,[9] An existence result for a compressible fluid pattern coupled to a cylindrical shell, Nonlinear Anal. Real World Appl. 7 (2006) 308-318. | MR | Zbl
, , ,[10] Convergence of a Lagrangian scheme for a compressible Navier-Stokes model defined on a domain depending on time, Nonlinear Anal. TMA 61 (2005) 759-780. | MR | Zbl
, , ,[11] On a nonlinear fluid-structure interaction problem defined on a domain depending on time, Nonlinear Anal. TMA 38 (1999) 549-569. | MR | Zbl
, ,[12] Fluid-structure interaction: analysis of a 3-d compressible model, Ann. Inst. H. Poincaré Nonlin. Anal. 17 (2000) 753-777. | Numdam | MR | Zbl
, ,[13] Mathematical Topics in Fluid Mechanics, vol. 1, Oxford University Press, 1996. | MR | Zbl
,[14] Mathematical Topics in Fluid Mechanics, vol. 2, Oxford University Press, 1998. | MR | Zbl
,[15] Simulation of a spilled oil slick with a shallow water model with free boundary, Math. Models Methods Appl. Sci. 17 (3) (2007) 393-409. | MR | Zbl
, , ,[16] Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mach. Anal. 130 (1995) 183-204. | MR | Zbl
,[17] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR | Zbl
, ,[18] The solvability of the problem of the motion of a viscous incompressible fluid that is bounded by a free surface, Izv. Akad. Nauk SSSR Ser. Mat. 41 (6) (1977) 1388-1424. | MR | Zbl
,[19] Unsteady motion of a finite mass of fluid bounded by a free surface, J. Soviet Math. 40 (1988) 672-686. | MR | Zbl
,Cité par Sources :