@article{AIHPC_2009__26_1_1_0, author = {Hang, Fengbo and Wang, Xiaodong and Yan, Xiaodong}, title = {An {Integral} {Equation} in {Conformal} {Geometry}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--21}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2007.03.006}, mrnumber = {2483810}, zbl = {1154.45004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.006/} }
TY - JOUR AU - Hang, Fengbo AU - Wang, Xiaodong AU - Yan, Xiaodong TI - An Integral Equation in Conformal Geometry JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1 EP - 21 VL - 26 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.006/ DO - 10.1016/j.anihpc.2007.03.006 LA - en ID - AIHPC_2009__26_1_1_0 ER -
%0 Journal Article %A Hang, Fengbo %A Wang, Xiaodong %A Yan, Xiaodong %T An Integral Equation in Conformal Geometry %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1-21 %V 26 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.006/ %R 10.1016/j.anihpc.2007.03.006 %G en %F AIHPC_2009__26_1_1_0
Hang, Fengbo; Wang, Xiaodong; Yan, Xiaodong. An Integral Equation in Conformal Geometry. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 1-21. doi : 10.1016/j.anihpc.2007.03.006. http://www.numdam.org/articles/10.1016/j.anihpc.2007.03.006/
[1] Sobolev Spaces, Pure and Applied Mathematics, vol. 65, second ed., Academic Press, New York-London, 2003. | MR | Zbl
,[2] Spherical Rearrangements, Sub-Harmonic Functions and *-Functions in N-Space, Duke Math. J. 43 (1976) 245-268. | MR | Zbl
, ,[3] Zur Theorie Der Minimalflächen, Math. Z. 9 (1921) 154-160. | EuDML | JFM | MR
,[4] The Yamabe Problem on Manifolds With Boundary, J. Differential Geom. 35 (1) (1992) 21-84. | MR | Zbl
,[5] Conformal Deformation of a Riemannian Metric to a Scalar Flat Metric With Constant Mean Curvature on the Boundary, Ann. of Math. (2) 136 (1) (1992) 1-50. | MR | Zbl
,[6] Elliptic Partial Differential Equations of Second Order, second ed., third printing, Springer-Verlag, Berlin, 1998. | Zbl
, ,[7] F.B. Hang, X.D. Wang, X.D. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., in press. | MR | Zbl
[8] S. Jacobs, An isoperimetric inequality for functions analytic in multiply connected domains, Mittag-Leffler Institute report, 1972.
[9] The Yamabe Problem, Bull. Amer. Math. Soc. (N.S.) 17 (1) (1987) 37-91. | MR | Zbl
, ,[10] The Concentration-Compactness Principle in the Calculus of Variations. the Limit Case. II, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121. | MR | Zbl
,[11] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. | MR | Zbl
, ,Cité par Sources :