@article{AIHPC_2008__25_3_425_0, author = {Wei, Juncheng and Ye, Dong and Zhou, Feng}, title = {Analysis of boundary bubbling solutions for an anisotropic {Emden-Fowler} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {425--447}, publisher = {Elsevier}, volume = {25}, number = {3}, year = {2008}, doi = {10.1016/j.anihpc.2007.02.001}, mrnumber = {2422074}, zbl = {1155.35037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.001/} }
TY - JOUR AU - Wei, Juncheng AU - Ye, Dong AU - Zhou, Feng TI - Analysis of boundary bubbling solutions for an anisotropic Emden-Fowler equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 425 EP - 447 VL - 25 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.001/ DO - 10.1016/j.anihpc.2007.02.001 LA - en ID - AIHPC_2008__25_3_425_0 ER -
%0 Journal Article %A Wei, Juncheng %A Ye, Dong %A Zhou, Feng %T Analysis of boundary bubbling solutions for an anisotropic Emden-Fowler equation %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 425-447 %V 25 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.001/ %R 10.1016/j.anihpc.2007.02.001 %G en %F AIHPC_2008__25_3_425_0
Wei, Juncheng; Ye, Dong; Zhou, Feng. Analysis of boundary bubbling solutions for an anisotropic Emden-Fowler equation. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 3, pp. 425-447. doi : 10.1016/j.anihpc.2007.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2007.02.001/
[1] Harmonic radius and concentration of energy hyperbolic radius and Liouville’s equations and , SIAM Rev. 38 (2) (1996) 191-238. | MR | Zbl
, ,[2] Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1) (1998) 1-38. | MR | Zbl
, ,[3] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (8-9) (1991) 1223-1253. | MR | Zbl
, ,[4] A special class of stationary flows for two-dimensional Euler-equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992) 501-525. | MR | Zbl
, , , ,[5] A special class of stationary flows for two-dimensional Euler-equations: a statistical mechanics description, Part II, Comm. Math. Phys. 174 (1995) 229-260. | MR | Zbl
, , , ,[6] An Introduction to the Study of Stellar Structure, Dover, New York, 1957. | MR | Zbl
,[7] Surfaces with prescribed Gauss curvature, Duke Math. J. 105 (2) (2000) 309-353. | MR | Zbl
, ,[8] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623. | MR | Zbl
, ,[9] Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations 24 (2005) 47-81. | MR | Zbl
, , ,[10] On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 227-257. | Numdam | MR | Zbl
, , ,[11] Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. 29 (1963) 295-381. | MR | Zbl
,[12] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243. | MR | Zbl
, , ,[13] Quasilinear problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973) 241-269. | MR | Zbl
, ,[14] Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999) 421-444. | MR | Zbl
,[15] Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J. 43 (4) (1994) 1255-1270. | MR | Zbl
, ,[16] Positive radial solutions and non-radial bifurcation for semilinear elliptic equations in annular domains, J. Differential Eqnuations 86 (1990) 367-391. | MR | Zbl
,[17] Topological degree for mean field equations on , Duke Math. J. 104 (3) (2000) 501-536. | MR | Zbl
,[18] Convergence for a Liouville equation, Comm. Math. Helv. 76 (2001) 506-514. | MR | Zbl
, ,[19] Variation d'un point retournement par rapport au domaine, Comm. Partial Differential Equations 4 (1979) 1263-1297. | MR | Zbl
, , ,[20] Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations 134 (1997) 183-215. | MR | Zbl
, ,[21] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990) 173-188. | MR | Zbl
, ,[22] Radial solutions for on annuli in higher dimensions, J. Differential Equations 100 (1992) 137-161. | MR | Zbl
, ,[23] Radial and non-radial solutions of on an annulus of , , J. Differential Equations 101 (1993) 103-138. | MR | Zbl
,[24] Eigenfunctions of the equation , Soviet Math. Dokl. 6 (1965) 1408-1411. | MR | Zbl
,[25] Some structures of the solution set from stationary system of chemotaxis, Adv. Math. Sci. Appl. 10 (2000) 191-224. | MR | Zbl
, ,[26] Bubbling solutions for an anisotropic Emden-Fowler equation, Calc. Var. Partial Differential Equations 28 (2007) 217-247. | MR | Zbl
, , ,[27] Une remarque sur le comportement asymptotique des solutions de , C. R. Acad. Sci. Paris I 325 (1997) 1279-1282. | MR | Zbl
,[28] A generalized two dimensional Emden-Fowler equation with exponential nonlinearity, Calc. Var. Partial Differential Equations 13 (2001) 141-158. | MR | Zbl
, ,Cité par Sources :