@article{AIHPC_2008__25_1_173_0, author = {Dancer, E. N.}, title = {Finite {Morse} index solutions of exponential problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {173--179}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.12.001}, mrnumber = {2383085}, zbl = {1136.35030}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.001/} }
TY - JOUR AU - Dancer, E. N. TI - Finite Morse index solutions of exponential problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 173 EP - 179 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.001/ DO - 10.1016/j.anihpc.2006.12.001 LA - en ID - AIHPC_2008__25_1_173_0 ER -
%0 Journal Article %A Dancer, E. N. %T Finite Morse index solutions of exponential problems %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 173-179 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.001/ %R 10.1016/j.anihpc.2006.12.001 %G en %F AIHPC_2008__25_1_173_0
Dancer, E. N. Finite Morse index solutions of exponential problems. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 1, pp. 173-179. doi : 10.1016/j.anihpc.2006.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2006.12.001/
[1] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (4) (2000) 725-739, (electronic). | MR | Zbl
, ,[2] Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math. 45 (9) (1992) 1205-1215. | MR | Zbl
, ,[3] Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (3) (1991) 489-539. | MR | Zbl
, ,[4] The sub-harmonic bifurcation of Stokes waves, Arch. Ration. Mech. Anal. 152 (3) (2000) 241-271. | MR | Zbl
, , ,[5] An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939. | JFM | Zbl
,[6] Stable and not too unstable solutions on for small diffusion, in: , , (Eds.), Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, Amer. Math. Soc., 2006, pp. 67-94. | MR
,[7] Stable and finite Morse index solutions on or on bounded domains with small diffusion, Trans. Amer. Math. Soc. 357 (3) (2005) 1225-1243. | MR | Zbl
,[8] E.N. Dancer, Finite Morse index solutions of supercritical problems, J. Reine Angew. Math., submitted for publication. | MR | Zbl
[9] Stable solutions on and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations 17 (9-10) (2004) 961-970. | MR | Zbl
,[10] Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4) 178 (2000) 225-233. | MR | Zbl
,[11] Real analyticity and non-degeneracy, Math. Ann. 325 (2) (2003) 369-392. | MR | Zbl
,[12] Subharmonic Functions, Academic Press, London, 1979. | Zbl
, ,[13] Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1972/73) 241-269. | MR | Zbl
, ,[14] New Liouville theorems for linear second order degenerate elliptic equations in divergence form, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (1) (2005) 11-23. | Numdam | MR | Zbl
,[15] Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (3) (1979) 293-319. | MR | Zbl
, ,[16] Semilinear Elliptic Equations, GAKUTO International Series. Mathematical Sciences and Applications, vol. 3, Gakkōtosho Co. Ltd., Tokyo, 1994. | MR | Zbl
,Cité par Sources :