Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 1009-1028.
@article{AIHPC_2007__24_6_1009_0,
     author = {Baji, B. and Cabot, A. and D{\'\i}az, J. I.},
     title = {Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1009--1028},
     publisher = {Elsevier},
     volume = {24},
     number = {6},
     year = {2007},
     doi = {10.1016/j.anihpc.2006.10.005},
     mrnumber = {2371117},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.005/}
}
TY  - JOUR
AU  - Baji, B.
AU  - Cabot, A.
AU  - Díaz, J. I.
TI  - Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
SP  - 1009
EP  - 1028
VL  - 24
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.005/
DO  - 10.1016/j.anihpc.2006.10.005
LA  - en
ID  - AIHPC_2007__24_6_1009_0
ER  - 
%0 Journal Article
%A Baji, B.
%A Cabot, A.
%A Díaz, J. I.
%T Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results
%J Annales de l'I.H.P. Analyse non linéaire
%D 2007
%P 1009-1028
%V 24
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.005/
%R 10.1016/j.anihpc.2006.10.005
%G en
%F AIHPC_2007__24_6_1009_0
Baji, B.; Cabot, A.; Díaz, J. I. Asymptotics for some nonlinear damped wave equation : finite time convergence versus exponential decay results. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 1009-1028. doi : 10.1016/j.anihpc.2006.10.005. http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.005/

[1] Adly S., Attouch H., Cabot A., Finite time stabilization of nonlinear oscillators subject to dry friction, in: Alart P., Maisonneuve O., Rockafellar R.T. (Eds.), Progresses in Nonsmooth Mechanics and Analysis, Advances in Mathematics and Mechanics, Kluwer, 2006, pp. 289-304. | MR

[2] Baji B., Cabot A., An inertial proximal algorithm with dry friction: finite convergence results, Set Valued Anal. 14 (1) (2006) 1-23. | MR | Zbl

[3] Bamberger A., Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 699-702. | MR | Zbl

[4] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, second ed., D. Reidel, Dordrecht, 1986. | MR | Zbl

[5] Bogolioubov N., Mitropolski I., Les méthodes asymptotiques en théorie des oscillations non linéaires, Gauthier-Villars, Paris, 1962. | MR | Zbl

[6] Brézis H., Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972) 1-168. | MR | Zbl

[7] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973. | MR | Zbl

[8] Brogliato B., Nonsmooth Mechanics, second ed., Springer CCES, London, 1999. | Zbl

[9] Cabannes H., Mouvement d'une corde vibrante soumise à un frottement solide, C. R. Acad. Sci. Paris Sér. A-B 287 (1978) 671-673. | MR | Zbl

[10] Cabannes H., Study of motions of a vibrating string subject to solid friction, Math. Methods Appl. Sci. 3 (1981) 287-300. | MR | Zbl

[11] A. Cabot, Stabilization of oscillators subject to dry friction: finite time convergence versus exponential decay results, Trans. Amer. Math. Soc., in press. | MR | Zbl

[12] Cazenave T., Haraux A., An introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, 1998. | MR | Zbl

[13] Dafermos C.M., Slemrod M., Asymptotic behavior of non linear contraction semi-groups, J. Funct. Anal. 12 (1973) 97-106. | MR | Zbl

[14] J.I. Díaz, V. Millot, Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators, in: XVIII CEDYA: Congress on Differential Equations and Applications/VIII CMA: Congress on Applied Mathematics, Tarragona, 2003.

[15] Hale J.K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, Amer. Math. Soc., Providence, RI, 1988. | MR | Zbl

[16] A. Haraux, Opérateurs maximaux monotones et oscillations forcées non linéaires, Thèse, Université Pierre et Marie Curie, Paris, 1978.

[17] Haraux A., Comportement à l'infini pour certains systèmes dissipatifs non linéaires, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979) 213-234. | MR | Zbl

[18] Haraux A., Nonlinear Evolution Equations. Global Behavior of Solutions, Lecture Notes in Mathematics, vol. 841, Springer-Verlag, New York, 1981. | MR | Zbl

[19] Haraux A., Systèmes dynamiques dissipatifs et applications, RMA, vol. 17, Masson, Paris, 1991. | MR | Zbl

[20] Panagiotopoulos P.D., Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985. | MR | Zbl

[21] Rockafellar R.T., Wets R., Variational Analysis, Springer, Berlin, 1998. | MR | Zbl

[22] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. | MR | Zbl

Cité par Sources :