@article{AIHPC_2007__24_6_953_0, author = {Conti, Sergio and Dolzmann, Georg and Kirchheim, Bernd}, title = {Existence of {Lipschitz} minimizers for the three-well problem in solid-solid phase transitions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {953--962}, publisher = {Elsevier}, volume = {24}, number = {6}, year = {2007}, doi = {10.1016/j.anihpc.2006.10.002}, mrnumber = {2371114}, zbl = {1131.74037}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.002/} }
TY - JOUR AU - Conti, Sergio AU - Dolzmann, Georg AU - Kirchheim, Bernd TI - Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 953 EP - 962 VL - 24 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.002/ DO - 10.1016/j.anihpc.2006.10.002 LA - en ID - AIHPC_2007__24_6_953_0 ER -
%0 Journal Article %A Conti, Sergio %A Dolzmann, Georg %A Kirchheim, Bernd %T Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 953-962 %V 24 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.002/ %R 10.1016/j.anihpc.2006.10.002 %G en %F AIHPC_2007__24_6_953_0
Conti, Sergio; Dolzmann, Georg; Kirchheim, Bernd. Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 6, pp. 953-962. doi : 10.1016/j.anihpc.2006.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2006.10.002/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR | Zbl
, ,[2] Soft elasticity and microstructure in smectic C elastomers, Cont. Mech. Thermodyn. 18 (2007) 319-334. | MR | Zbl
, , ,[3] Some open problems in elasticity, in: , , (Eds.), Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 3-59. | MR | Zbl
,[4] Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal. 100 (1987) 13-52. | MR | Zbl
, ,[5] Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl
, ,[6] Self-accommodation in martensite, Arch. Ration. Mech. Anal. 120 (1992) 201-244. | MR | Zbl
,[7] Equilibrium configurations of crystals, Arch. Ration. Mech. Anal. 103 (1988) 237-277. | MR | Zbl
, ,[8] Multiscale modeling of materials - the role of analysis, in: , , , (Eds.), Trends in Nonlinear Analysis (Heidelberg), Springer, 2002, pp. 375-408. | Zbl
, , , , ,[9] Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. | Zbl
, ,[10] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997) 1-37. | Zbl
, ,[11] Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser, 1999. | MR | Zbl
, ,[12] Macroscopic response of nematic elastomers via relaxation of a class of -invariant energies, Arch. Ration. Mech. Anal. 161 (2002) 181-204. | MR | Zbl
, ,[13] Liquid-like behavior of shape memory alloys, C. R. Math. Acad. Sci. Paris, Ser. I 336 (2003) 441-446. | MR | Zbl
, ,[14] Microstructures with finite surface energy: the two-well problem, Arch. Ration. Mech. Anal. 132 (1995) 101-141. | MR | Zbl
, ,[15] Partial Differential Relations, Springer-Verlag, 1986. | MR | Zbl
,[16] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation, Preprint 12, Max Planck Institute for Mathematics in the Sciences, Leipzig, 1998.
[17] Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 289-294. | MR | Zbl
,[18] B. Kirchheim, Rigidity and geometry of microstructures, MPI-MIS Lecture Notes 16, 2002.
[19] Studying nonlinear pde by geometry in matrix space, in: , (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, 2003, pp. 347-395. | MR
, , ,[20] Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985) 1-28. | MR | Zbl
,[21] Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[22] Attainment results for the two-well problem by convex integration, in: Geometric Analysis and the Calculus of Variations, Internat. Press, Cambridge, MA, 1996, pp. 239-251. | MR | Zbl
, ,[23] Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS) 1 (1999) 393-442. | MR | Zbl
, ,[24] Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 (2001) 447-475. | MR | Zbl
, ,[25] On the problem of two wells, in: Microstructure and Phase Transition, IMA Vol. Math. Appl., vol. 54, Springer, New York, 1993, pp. 183-189. | MR | Zbl
,[26] Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations 13 (2001) 213-229. | MR | Zbl
,Cité par Sources :