@article{AIHPC_2008__25_1_1_0, author = {Duyckaerts, Thomas and Zhang, Xu and Zuazua, Enrique}, title = {On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--41}, publisher = {Elsevier}, volume = {25}, number = {1}, year = {2008}, doi = {10.1016/j.anihpc.2006.07.005}, mrnumber = {2383077}, zbl = {1248.93031}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.005/} }
TY - JOUR AU - Duyckaerts, Thomas AU - Zhang, Xu AU - Zuazua, Enrique TI - On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 1 EP - 41 VL - 25 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.005/ DO - 10.1016/j.anihpc.2006.07.005 LA - en ID - AIHPC_2008__25_1_1_0 ER -
%0 Journal Article %A Duyckaerts, Thomas %A Zhang, Xu %A Zuazua, Enrique %T On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 1-41 %V 25 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.005/ %R 10.1016/j.anihpc.2006.07.005 %G en %F AIHPC_2008__25_1_1_0
Duyckaerts, Thomas; Zhang, Xu; Zuazua, Enrique. On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 1, pp. 1-41. doi : 10.1016/j.anihpc.2006.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.005/
[1] Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Princeton Univ. Press, Princeton, NJ, 1982. | MR | Zbl
,[2] A nonuniqueness result for operators of principal type, Math. Z. 220 (1995) 561-568. | MR | Zbl
, ,[3] Unicité forte à partir d'une variété de dimension quelconque pour des inégalités différentielles elliptiques, Duke Math. J. 48 (1981) 49-68. | MR | Zbl
, ,[4] A pointwise lower bound for positive solutions of a Schrödinger equation in , J. Differential Equations 133 (1997) 280-295. | MR | Zbl
, ,[5] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl
, , ,[6] Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian, Proc. Roy. Soc. Edinburgh Sect. A 76 (1977) 323-344. | MR | Zbl
, ,[7] One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms, Discrete Contin. Dyn. Syst. B 8 (2002) 745-756. | MR | Zbl
, , ,[8] Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal. 164 (2002) 39-72. | MR | Zbl
, ,[9] On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim. 41 (2002) 798-819. | MR | Zbl
, , , ,[10] Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, in: New Trends in Systems Analysis, Proc. Internat. Sympos., Versailles, 1976, Lecture Notes in Control and Inform. Sci., vol. 2, Springer, Berlin, 1977, pp. 111-124. | MR | Zbl
,[11] The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations 5 (2000) 465-514. | MR | Zbl
, ,[12] Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583-616. | Numdam | MR | Zbl
, ,[13] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994. | MR | Zbl
, ,[14] X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear equations, Preprint, 2004.
[15] Non-uniqueness for the Cauchy problem, in: (Ed.), Fourier Integral Operators and Partial Differential Equations, Colloque International, Nice, Lecture Notes in Mathematics, vol. 459, Springer-Verlag, Berlin, 1974, pp. 36-72. | MR | Zbl
,[16] On Carleman estimates for hyperbolic equations, Asymptotic Anal. 32 (2002) 185-220. | MR | Zbl
,[17] Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1 & 2, RMA, vols. 8-9, Masson, Paris, 1988. | MR | Zbl
,[18] On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb. 182 (1991) 364-383, (in Russian); Translation in, Math. USSR-Sb. 72 (1992) 343-361. | MR | Zbl
,[19] Geometric bounds on the growth rate of null-controllability cost of the heat equation in small time, J. Differential Equations 204 (2004) 202-226. | MR | Zbl
,[20] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM: Control Optim. Calc. Var. 2 (1997) 33-55. | Numdam | MR | Zbl
,[21] A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math. 52 (1973) 189-221. | MR | Zbl
,[22] The “window problem” for series of complex exponentials, J. Fourier Anal. Appl. 6 (2000) 233-254. | MR | Zbl
, , ,[23] Partial Differential Equations, Wiley, New York, 1992. | MR | Zbl
,[24] Lower bounds of decay order of eigenfunctions of second-order elliptic operators, Publ. Res. Inst. Math. Sci. 21 (1985) 1281-1297. | MR | Zbl
,[25] A Course of Modern Analysis, Reprint of the fourth edition 1927, Cambridge Univ. Press, Cambridge, 1996. | JFM | MR | Zbl
, ,[26] A counterexample in a unique continuation problem, Comm. Anal. Geom. 2 (1994) 79-102. | MR | Zbl
,[27] Exact controllability of semilinear plate equations, Asymptotic Anal. 27 (2001) 95-125. | MR | Zbl
,[28] Exact controllability of the semi-linear wave equation, in: , (Eds.), Sixty Open Problems in the Mathematics of Systems and Control, Princeton University Press, 2004, pp. 173-178.
, ,[29] Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109-129. | Numdam | MR | Zbl
,[30] Remarks on the controllability of the Schrödinger equation, in: , , (Eds.), Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 181-199. | MR
,[31] Uniqueness and Nonuniqueness in the Cauchy Problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Boston, MA, 1983. | MR | Zbl
,Cité par Sources :