@article{AIHPC_2007__24_3_369_0, author = {Chen, Xinfu and Guo, Jong-Shenq and Hamel, Fran\c{c}ois and Ninomiya, Hirokazu and Roquejoffre, Jean-Michel}, title = {Traveling waves with paraboloid like interfaces for balanced bistable dynamics}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {369--393}, publisher = {Elsevier}, volume = {24}, number = {3}, year = {2007}, doi = {10.1016/j.anihpc.2006.03.012}, mrnumber = {2319939}, zbl = {1132.35396}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.012/} }
TY - JOUR AU - Chen, Xinfu AU - Guo, Jong-Shenq AU - Hamel, François AU - Ninomiya, Hirokazu AU - Roquejoffre, Jean-Michel TI - Traveling waves with paraboloid like interfaces for balanced bistable dynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 369 EP - 393 VL - 24 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.012/ DO - 10.1016/j.anihpc.2006.03.012 LA - en ID - AIHPC_2007__24_3_369_0 ER -
%0 Journal Article %A Chen, Xinfu %A Guo, Jong-Shenq %A Hamel, François %A Ninomiya, Hirokazu %A Roquejoffre, Jean-Michel %T Traveling waves with paraboloid like interfaces for balanced bistable dynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 369-393 %V 24 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.012/ %R 10.1016/j.anihpc.2006.03.012 %G en %F AIHPC_2007__24_3_369_0
Chen, Xinfu; Guo, Jong-Shenq; Hamel, François; Ninomiya, Hirokazu; Roquejoffre, Jean-Michel. Traveling waves with paraboloid like interfaces for balanced bistable dynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 369-393. doi : 10.1016/j.anihpc.2006.03.012. http://www.numdam.org/articles/10.1016/j.anihpc.2006.03.012/
[1] On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math. 65 (2001) 9-33. | MR | Zbl
, , ,[2] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall. 27 (1979) 1084-1095.
, ,[3] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000) 725-739. | MR | Zbl
, ,[4] Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978) 33-76. | MR | Zbl
, ,[5] Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997) 1089-1111. | MR | Zbl
, , ,[6] One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (2000) 375-396. | MR | Zbl
, , ,[7] H. Berestycki, B. Larrouturou, Planar travelling front solutions of reaction-diffusion problems, preprint.
[8] Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal. 31 (1999) 80-118. | MR | Zbl
, ,[9] Fully Nonlinear Elliptic Equations, Colloquium Publications, vol. 43, Amer. Math. Soc., 1995. | MR | Zbl
, ,[10] Invariant manifolds for metastable patterns in , Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 133-160. | MR | Zbl
, ,[11] Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations 96 (1992) 116-141. | Zbl
,[12] Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces, Comm. Partial Differential Equations 19 (1994) 1371-1395. | Zbl
,[13] Generation, propagation, and annihilation of metastable patterns, J. Differential Equations 206 (2004) 399-437. | MR | Zbl
,[14] X. Chen, J.-S. Guo, H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, in press. | Zbl
[15] Instability of spherical interfaces in a nonlinear free boundary problem, Adv. Differential Equations 5 (2000) 747-772. | MR | Zbl
, ,[16] Convergence problems for functionals and operators, in: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, 1979, pp. 131-188. | MR | Zbl
,[17] Development of interfaces in , Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207-220. | MR | Zbl
, ,[18] The motion of weakly interaction pulses in reaction-diffusion systems, J. Dynamics Differential Equations 14 (2002) 85-137. | Zbl
,[19] Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992) 1097-1123. | MR | Zbl
, , ,[20] Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 53, 1988. | MR | Zbl
,[21] The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal. 65 (1977) 335-361. | MR | Zbl
, ,[22] A geometric approach to the dynamics of for small ε, in: (Ed.), Lecture Notes in Physics, vol. 359, 1990, pp. 53-73. | Zbl
,[23] Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynamics Differential Equations 1 (1989) 75-94. | MR | Zbl
, ,[24] On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998) 481-491. | MR | Zbl
, ,[25] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1997. | Zbl
, ,[26] Solutions of semilinear elliptic equations in with conical-shaped level sets, Comm. Partial Differential Equations 25 (2000) 769-819. | MR | Zbl
, ,[27] Existence and uniqueness for a free boundary problem arising in combustion theory, Interfaces Free Boundaries 4 (2002) 167-210. | MR | Zbl
, ,[28] Stability of traveling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup. 37 (2004) 469-506. | Numdam | MR | Zbl
, , ,[29] Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems 13 (2005) 1069-1096. | MR | Zbl
, , ,[30] Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems 14 (2006) 75-92. | MR
, , ,[31] Travelling waves and entire solutions of the Fisher-KPP equation in , Arch. Rational Mech. Anal. 157 (2001) 91-163. | MR | Zbl
, ,[32] Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 283-329. | Numdam | MR | Zbl
, ,[33] Convergence of the Allen-Cahn equation to Brakke's motion, J. Differential Geom. 38 (1993) 417-461. | Zbl
,[34] Traveling curved fronts of a mean curvature flow with constant driving force, in: Free Boundary Problems: Theory and Applications, I, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 13, 2000, pp. 206-221. | MR | Zbl
, ,[35] Stability of traveling curved fronts in a curvature flow with driving force, Methods Appl. Anal. 8 (2001) 429-450. | MR | Zbl
, ,[36] Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005) 204-233.
, ,[37] H. Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Cont. Dyn. Systems, submitted for publication. | Zbl
[38] Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998) 121-156. | MR | Zbl
, ,[39] O. Savin, Phase transitions: regularity of flat level sets, preprint.
[40] Motion of a set by the curvature of its boundary, J. Differential Equations 101 (1993) 313-372. | MR | Zbl
,Cité par Sources :