Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 2, pp. 207-225.
@article{AIHPC_2007__24_2_207_0,
     author = {Demoulini, Sophia},
     title = {Global existence for a nonlinear {Schroedinger-Chern-Simons} system on a surface},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {207--225},
     publisher = {Elsevier},
     volume = {24},
     number = {2},
     year = {2007},
     doi = {10.1016/j.anihpc.2006.01.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/}
}
TY  - JOUR
AU  - Demoulini, Sophia
TI  - Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
SP  - 207
EP  - 225
VL  - 24
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/
DO  - 10.1016/j.anihpc.2006.01.004
LA  - en
ID  - AIHPC_2007__24_2_207_0
ER  - 
%0 Journal Article
%A Demoulini, Sophia
%T Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface
%J Annales de l'I.H.P. Analyse non linéaire
%D 2007
%P 207-225
%V 24
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/
%R 10.1016/j.anihpc.2006.01.004
%G en
%F AIHPC_2007__24_2_207_0
Demoulini, Sophia. Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 2, pp. 207-225. doi : 10.1016/j.anihpc.2006.01.004. http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/

[1] Aubin T., Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer-Verlag, New York, 1980. | Zbl

[2] Berge L., De Bouard A., Saut J., Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity 8 (1995) 235-253. | Zbl

[3] Berge L., De Bouard A., Saut J., Collapse of Chern-Simons-gauged matter fields, Phys. Rev. Lett. 74 (1995) 3907-3911. | Zbl

[4] Brezis H., Gallouet T., Nonlinear Schroedinger evolution equations, Nonlinear Anal. 4 (4) (1980) 677-681. | MR | Zbl

[5] Chae D., Choe K., Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory, Nonlinearity 15 (2002) 747-758. | Zbl

[6] Demoulini S., Stuart D., Gradient flow of the superconducting Ginzburg-Landau functional on the plane, Comm. Anal. Geom. 5 (1) (1997) 121-198. | Zbl

[7] Demoulini S., Periodic solutions and rigid rotation of the gauged Ginzburg-Landau vortices, in: (Berlin, 1999), International Conference on Differential Equations, vols. 1, 2, World Sci. Publishing, River Edge, NJ, 2000, pp. 542-544. | Zbl

[8] Kato T., Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970) 241-258. | Zbl

[9] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, 1984. | MR | Zbl

[10] Manton N., First order vortex dynamics, Ann. Phys. 256 (1997) 114-131. | MR | Zbl

[11] Palais R., Foundations of Global Nonlinear Analysis, Mathematics Lecture Note Series, W.A. Benjamin, New York, 1968. | MR | Zbl

[12] Stuart D., Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys. 159 (1994) 51-91. | MR | Zbl

[13] Stuart D., Periodic solutions of the Abelian Higgs model and rigid rotation of vortices, Geom. Funct. Anal. (GAFA) 9 (1999) 1-28. | MR | Zbl

[14] Taylor M., Partial Differential Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 1996. | MR | Zbl

Cité par Sources :