@article{AIHPC_2007__24_2_207_0, author = {Demoulini, Sophia}, title = {Global existence for a nonlinear {Schroedinger-Chern-Simons} system on a surface}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {207--225}, publisher = {Elsevier}, volume = {24}, number = {2}, year = {2007}, doi = {10.1016/j.anihpc.2006.01.004}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/} }
TY - JOUR AU - Demoulini, Sophia TI - Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 207 EP - 225 VL - 24 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/ DO - 10.1016/j.anihpc.2006.01.004 LA - en ID - AIHPC_2007__24_2_207_0 ER -
%0 Journal Article %A Demoulini, Sophia %T Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 207-225 %V 24 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/ %R 10.1016/j.anihpc.2006.01.004 %G en %F AIHPC_2007__24_2_207_0
Demoulini, Sophia. Global existence for a nonlinear Schroedinger-Chern-Simons system on a surface. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 2, pp. 207-225. doi : 10.1016/j.anihpc.2006.01.004. http://www.numdam.org/articles/10.1016/j.anihpc.2006.01.004/
[1] Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer-Verlag, New York, 1980. | Zbl
,[2] Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity 8 (1995) 235-253. | Zbl
, , ,[3] Collapse of Chern-Simons-gauged matter fields, Phys. Rev. Lett. 74 (1995) 3907-3911. | Zbl
, , ,[4] Nonlinear Schroedinger evolution equations, Nonlinear Anal. 4 (4) (1980) 677-681. | MR | Zbl
, ,[5] Global existence in the Cauchy problem of the relativistic Chern-Simons-Higgs theory, Nonlinearity 15 (2002) 747-758. | Zbl
, ,[6] Gradient flow of the superconducting Ginzburg-Landau functional on the plane, Comm. Anal. Geom. 5 (1) (1997) 121-198. | Zbl
, ,[7] Periodic solutions and rigid rotation of the gauged Ginzburg-Landau vortices, in: (Berlin, 1999), International Conference on Differential Equations, vols. 1, 2, World Sci. Publishing, River Edge, NJ, 2000, pp. 542-544. | Zbl
,[8] Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970) 241-258. | Zbl
,[9] Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, 1984. | MR | Zbl
,[10] First order vortex dynamics, Ann. Phys. 256 (1997) 114-131. | MR | Zbl
,[11] Foundations of Global Nonlinear Analysis, Mathematics Lecture Note Series, W.A. Benjamin, New York, 1968. | MR | Zbl
,[12] Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys. 159 (1994) 51-91. | MR | Zbl
,[13] Periodic solutions of the Abelian Higgs model and rigid rotation of vortices, Geom. Funct. Anal. (GAFA) 9 (1999) 1-28. | MR | Zbl
,[14] Partial Differential Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 1996. | MR | Zbl
,Cité par Sources :