@article{AIHPC_2004__21_6_881_0, author = {Goatin, Paola and Le Floch, Philippe G.}, title = {The {Riemann} problem for a class of resonant hyperbolic systems of balance laws}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {881--902}, publisher = {Elsevier}, volume = {21}, number = {6}, year = {2004}, doi = {10.1016/j.anihpc.2004.02.002}, mrnumber = {2097035}, zbl = {1086.35069}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.02.002/} }
TY - JOUR AU - Goatin, Paola AU - Le Floch, Philippe G. TI - The Riemann problem for a class of resonant hyperbolic systems of balance laws JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 881 EP - 902 VL - 21 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.02.002/ DO - 10.1016/j.anihpc.2004.02.002 LA - en ID - AIHPC_2004__21_6_881_0 ER -
%0 Journal Article %A Goatin, Paola %A Le Floch, Philippe G. %T The Riemann problem for a class of resonant hyperbolic systems of balance laws %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 881-902 %V 21 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.02.002/ %R 10.1016/j.anihpc.2004.02.002 %G en %F AIHPC_2004__21_6_881_0
Goatin, Paola; Le Floch, Philippe G. The Riemann problem for a class of resonant hyperbolic systems of balance laws. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 6, pp. 881-902. doi : 10.1016/j.anihpc.2004.02.002. http://www.numdam.org/articles/10.1016/j.anihpc.2004.02.002/
[1] Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 162 (2002) 327-366. | MR | Zbl
, , ,[2] Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations 198 (2004) 233-274. | MR | Zbl
, , ,[3] N. Andrianov, G. Warnecke, The Riemann problem for the Baer-Nunziato model of two-phase flows, J. Comput. Phys., in press. | Zbl
[4] N. Andrianov, G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., in press. | MR | Zbl
[5] A simple method for compressible multiphase mixtures and interfaces, Int. J. Num. Meth. Fluids 41 (2003) 109-131. | MR | Zbl
, , ,[6] F. Asakura, Global solutions with a single transonic shock wave for quasilinear hyperbolic systems, submitted for publication. | MR | Zbl
[7] Equilibrium schemes for scalar conservation laws with stiff sources, Math. of Comput. 72 (2003) 131-157. | MR | Zbl
, , ,[8] F. Bouchut, An introduction to finite volume methods for hyperbolic systems of conservation laws with source, INRIA Rocquencourt Report, 2002.
[9] Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys. 180 (1996) 153-193. | MR | Zbl
, ,[10] Optimization and Non-Smooth Analysis, Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. | MR | Zbl
,[11] Supersonic Flow and Shock Waves, Wiley, New York, 1948. | MR | Zbl
, ,[12] Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483-548. | MR | Zbl
, , ,[13] Multiple steady states for 1-D transonic flows, SIAM J. Sci. Stat. Comput. 5 (1984) 21-41. | MR | Zbl
, , ,[14] A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math. 5 (1981) 1-30. | MR | Zbl
, , ,[15] A well-balanced scheme using non-conservative products designed for hyperbolic conservation laws with source-terms, Math. Model Methods Appl. Sci. 11 (2001) 339-365. | MR | Zbl
,[16] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996) 1-16. | MR | Zbl
, ,[17] Ordinary Differential Equations, Wiley, New York, 1964. | MR | Zbl
,[18] Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR | Zbl
, ,[19] Convergence of the Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995) 625-640. | MR | Zbl
, ,[20] An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comp. Math. 2 (2004) 230-249. | MR | Zbl
, ,[21] S. Jin, X. Wen, Two interface numerical methods for computing hyperbolic systems with geometrical source terms having concentrations, SIAM J. Sci. Com., in press. | Zbl
[22] Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Partial Differential Equations 13 (1988) 669-727. | MR | Zbl
,[23] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, Preprint # 593, 1989.
[24] An existence and uniqueness result for two nonstrictly hyperbolic systems, in: , (Eds.), Nonlinear Evolution Equations that Change Type, IMA Volumes in Math. and its Appl., vol. 27, Springer-Verlag, 1990, pp. 126-138. | MR | Zbl
,[25] Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. | MR | Zbl
,[26] The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci. 1 (2003) 763-797. | MR | Zbl
, ,[27] Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (1999) 1075-1098. | MR | Zbl
,[28] Quasilinear hyperbolic systems, Comm. Math. Phys. 68 (1979) 141-172. | MR | Zbl
,[29] Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (1982) 243-260. | MR | Zbl
,[30] Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987) 2593-2602. | MR | Zbl
,[31] D. Marchesin, P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984.
[32] An organizing center for wave bifurcation flow models, SIAM J. Appl. Math. 57 (1997) 1189-1215. | MR | Zbl
, , ,Cité par Sources :