@article{AIHPC_2004__21_4_401_0, author = {Coulombel, Jean-Fran\c{c}ois}, title = {Weakly stable multidimensional shocks}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {401--443}, publisher = {Elsevier}, volume = {21}, number = {4}, year = {2004}, doi = {10.1016/j.anihpc.2003.04.001}, mrnumber = {2069632}, zbl = {1072.35120}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.04.001/} }
TY - JOUR AU - Coulombel, Jean-François TI - Weakly stable multidimensional shocks JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 401 EP - 443 VL - 21 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2003.04.001/ DO - 10.1016/j.anihpc.2003.04.001 LA - en ID - AIHPC_2004__21_4_401_0 ER -
%0 Journal Article %A Coulombel, Jean-François %T Weakly stable multidimensional shocks %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 401-443 %V 21 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2003.04.001/ %R 10.1016/j.anihpc.2003.04.001 %G en %F AIHPC_2004__21_4_401_0
Coulombel, Jean-François. Weakly stable multidimensional shocks. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 4, pp. 401-443. doi : 10.1016/j.anihpc.2003.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2003.04.001/
[1] Sobolev Spaces, Academic Press, 1975. | MR | Zbl
,[2] Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14 (2) (1989) 173-230. | MR | Zbl
,[3] Blowup for Nonlinear Hyperbolic Equations, Birkhäuser, Boston, 1995. | MR | Zbl
,[4] Ordinary Differential Equations, Springer-Verlag, 1992. | MR | Zbl
,[5] Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal. 31 (1-2) (1998) 243-263. | MR | Zbl
,[6] Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal. 150 (1) (1999) 23-55. | MR | Zbl
,[7] Generic types and transitions in hyperbolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 1073-1104. | MR | Zbl
, , , ,[8] S. Benzoni-Gavage, D. Serre, First order systems of hyperbolic partial differential equations with applications, in preparation.
[9] Stability of fast parallel MHD shock waves in polytropic gas, Eur. J. Mech. B Fluids 18 (2) (1999) 197-211. | MR | Zbl
, ,[10] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (2) (1981) 209-246. | EuDML | Numdam | MR | Zbl
,[11] Introduction to the Theory of Linear Partial Differential Equations, North-Holland, 1982. | MR | Zbl
, ,[12] Weak stability of nonuniformly stable multidimensional shocks, SIAM J. Math. Anal. 34 (1) (2002) 142-172. | MR | Zbl
,[13] Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 2000. | MR | Zbl
,[14] Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque, vol. 268, 2000. | Numdam | MR | Zbl
, ,[15] Some results on the stability of non-classical shock waves, J. Partial Differential Equations 111 (1) (1998) 25-38. | MR | Zbl
,[16] Existence, bifurcation, and stability of profiles for classical and non-classical shock waves, in: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, 2001, pp. 287-309, 814. | MR | Zbl
, , ,[17] Mixed problems in several variables, J. Math. Mech. 12 (1963) 317-334. | MR | Zbl
,[18] Differential Topology, Springer-Verlag, 1994. | MR | Zbl
,[19] Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997. | MR | Zbl
,[20] Perturbation Theory for Linear Operators, Springer-Verlag, 1976. | MR | Zbl
,[21] Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970) 277-298. | MR | Zbl
,[22] Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957) 537-566. | MR | Zbl
,[23] The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 43 (281) (1983). | MR | Zbl
,[24] The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 41 (275) (1983). | MR | Zbl
,[25] Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, 1984. | MR | Zbl
,[26] The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc. 32 (6) (2000) 689-702. | MR | Zbl
,[27] Stability of multidimensional shocks, in: Advances in the Theory of Shock Waves, Birkhäuser, 2001, pp. 25-103. | MR | Zbl
,[28] Remarques sur un théorème de J.M. Bony, Suppl. Rend. Circ. Mat. Palermo Ser. II 1 (1981) 1-20. | MR | Zbl
,[29] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Ph.D. Thesis, Université de Rennes I, 1987.
[30] On structures of certain L2-well-posed mixed problems for hyperbolic systems of first order, Hokkaido Math. J. 4 (1975) 82-158. | MR | Zbl
, ,[31] Note on a paper of Kreiss, Comm. Pure Appl. Math. 24 (6) (1971) 759-762. | MR | Zbl
,[32] Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension 2, Arch. Rational Mech. Anal. 101 (3) (1988) 261-292. | MR | Zbl
,[33] Systems of Conservation Laws. 1, Cambridge University Press, 1999. | MR | Zbl
,[34] Systems of Conservation Laws. 2, Cambridge University Press, 2000. | MR | Zbl
,[35] La transition vers l'instabilité pour les ondes de choc multi-dimensionnelles, Trans. Amer. Math. Soc. 353 (12) (2001) 5071-5093. | MR | Zbl
,Cité par Sources :