On planar selfdual electroweak vortices
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 187-207.
@article{AIHPC_2004__21_2_187_0,
     author = {Chae, Dongho and Tarantello, Gabriella},
     title = {On planar selfdual electroweak vortices},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {187--207},
     publisher = {Elsevier},
     volume = {21},
     number = {2},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.01.001},
     mrnumber = {2047355},
     zbl = {1073.35079},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/}
}
TY  - JOUR
AU  - Chae, Dongho
AU  - Tarantello, Gabriella
TI  - On planar selfdual electroweak vortices
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 187
EP  - 207
VL  - 21
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/
DO  - 10.1016/j.anihpc.2003.01.001
LA  - en
ID  - AIHPC_2004__21_2_187_0
ER  - 
%0 Journal Article
%A Chae, Dongho
%A Tarantello, Gabriella
%T On planar selfdual electroweak vortices
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 187-207
%V 21
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/
%R 10.1016/j.anihpc.2003.01.001
%G en
%F AIHPC_2004__21_2_187_0
Chae, Dongho; Tarantello, Gabriella. On planar selfdual electroweak vortices. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 187-207. doi : 10.1016/j.anihpc.2003.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/

[1] Abrikosov A.A., On the magnetic properties of superconductors of second group, Sov. Phys. JETP 5 (1957) 1174-1182.

[2] Ambjorn J., Olesen P., A magnetic condensate solution of the classical electroweak theory, Phys. Lett. B 218 (1989) 67-71.

[3] Ambjorn J., Olesen P., On electroweak magnetis, Nucl. Phys. B 315 (1989) 606-614.

[4] Ambjorn J., Olesen P., A condensate solution of the electroweak theory which interpolates between the broken and symmetry phase, Nucl. Phys. B 330 (1990) 193-204.

[5] Bartolucci D., Tarantello G., The Liouville equations with singular data and their applications to electroweak vortices, Comm. Math. Phys. 229 (2002) 3-47. | MR | Zbl

[6] H. Brezis, F. Merle, Uniform estimates and blow-up behaviour for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations 16, (8,9), 1223-1253. | Zbl

[7] Chae D., Imanuvilov O.Yu., The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142. | MR | Zbl

[8] Chen W., Li C., Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J. 71 (2) (1993) 427-439. | MR | Zbl

[9] 'T Hooft G., A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979) 141-160. | MR

[10] C.H. Lai (Ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore. | MR

[11] Nirenberg L., Topics in Nonlinear Analysis, Courant Lecture Notes in Math., American Mathematical Society, 2001. | MR | Zbl

[12] Prajapat J., Tarantello G., On a class of elliptic problems in R2: symmetry and uniqueness results, Proc. Royal Soc. Edinburgh 131 (4) (2001) 967-985. | MR | Zbl

[13] Spruck J., Yang Y., On multivortices in the electroweak theory I: existence of periodic solutions, Comm. Math. Phys. 144 (1992) 1-16. | MR | Zbl

[14] Spruck J., Yang Y., On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys. 144 (1992) 215-234. | MR | Zbl

[15] Taubes C.H., Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys. 72 (1980) 277-292. | MR | Zbl

[16] Taubes C.H., On the equivalence of first order and second order equations for gauge theories, Comm. Math. Phys. 75 (1980) 207-227. | MR | Zbl

[17] Yang Y., Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Math., Springer-Verlag, New York, 2001. | MR | Zbl

Cité par Sources :