@article{AIHPC_2004__21_2_187_0, author = {Chae, Dongho and Tarantello, Gabriella}, title = {On planar selfdual electroweak vortices}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {187--207}, publisher = {Elsevier}, volume = {21}, number = {2}, year = {2004}, doi = {10.1016/j.anihpc.2003.01.001}, mrnumber = {2047355}, zbl = {1073.35079}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/} }
TY - JOUR AU - Chae, Dongho AU - Tarantello, Gabriella TI - On planar selfdual electroweak vortices JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 187 EP - 207 VL - 21 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/ DO - 10.1016/j.anihpc.2003.01.001 LA - en ID - AIHPC_2004__21_2_187_0 ER -
%0 Journal Article %A Chae, Dongho %A Tarantello, Gabriella %T On planar selfdual electroweak vortices %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 187-207 %V 21 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/ %R 10.1016/j.anihpc.2003.01.001 %G en %F AIHPC_2004__21_2_187_0
Chae, Dongho; Tarantello, Gabriella. On planar selfdual electroweak vortices. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 187-207. doi : 10.1016/j.anihpc.2003.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2003.01.001/
[1] On the magnetic properties of superconductors of second group, Sov. Phys. JETP 5 (1957) 1174-1182.
,[2] A magnetic condensate solution of the classical electroweak theory, Phys. Lett. B 218 (1989) 67-71.
, ,[3] On electroweak magnetis, Nucl. Phys. B 315 (1989) 606-614.
, ,[4] A condensate solution of the electroweak theory which interpolates between the broken and symmetry phase, Nucl. Phys. B 330 (1990) 193-204.
, ,[5] The Liouville equations with singular data and their applications to electroweak vortices, Comm. Math. Phys. 229 (2002) 3-47. | MR | Zbl
, ,[6] H. Brezis, F. Merle, Uniform estimates and blow-up behaviour for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations 16, (8,9), 1223-1253. | Zbl
[7] The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142. | MR | Zbl
, ,[8] Qualitative properties of solutions to some nonlinear elliptic equations in R2, Duke Math. J. 71 (2) (1993) 427-439. | MR | Zbl
, ,[9] A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys. B 153 (1979) 141-160. | MR
,[10] C.H. Lai (Ed.), Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions, World Scientific, Singapore. | MR
[11] Topics in Nonlinear Analysis, Courant Lecture Notes in Math., American Mathematical Society, 2001. | MR | Zbl
,[12] On a class of elliptic problems in R2: symmetry and uniqueness results, Proc. Royal Soc. Edinburgh 131 (4) (2001) 967-985. | MR | Zbl
, ,[13] On multivortices in the electroweak theory I: existence of periodic solutions, Comm. Math. Phys. 144 (1992) 1-16. | MR | Zbl
, ,[14] On multivortices in the electroweak theory II: existence of Bogomol'nyi solutions in R2, Comm. Math. Phys. 144 (1992) 215-234. | MR | Zbl
, ,[15] Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys. 72 (1980) 277-292. | MR | Zbl
,[16] On the equivalence of first order and second order equations for gauge theories, Comm. Math. Phys. 75 (1980) 207-227. | MR | Zbl
,[17] Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Math., Springer-Verlag, New York, 2001. | MR | Zbl
,Cité par Sources :