@article{AIHPB_2007__43_6_775_0, author = {Friz, Peter and Victoir, Nicolas}, title = {Large deviation principle for enhanced gaussian processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {775--785}, publisher = {Elsevier}, volume = {43}, number = {6}, year = {2007}, doi = {10.1016/j.anihpb.2006.11.002}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2006.11.002/} }
TY - JOUR AU - Friz, Peter AU - Victoir, Nicolas TI - Large deviation principle for enhanced gaussian processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 775 EP - 785 VL - 43 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2006.11.002/ DO - 10.1016/j.anihpb.2006.11.002 LA - en ID - AIHPB_2007__43_6_775_0 ER -
%0 Journal Article %A Friz, Peter %A Victoir, Nicolas %T Large deviation principle for enhanced gaussian processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 775-785 %V 43 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2006.11.002/ %R 10.1016/j.anihpb.2006.11.002 %G en %F AIHPB_2007__43_6_775_0
Friz, Peter; Victoir, Nicolas. Large deviation principle for enhanced gaussian processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 6, pp. 775-785. doi : 10.1016/j.anihpb.2006.11.002. http://www.numdam.org/articles/10.1016/j.anihpb.2006.11.002/
[1] Tail probabilities in Gauss space, in: Vector Space Measures and Applications, Dublin, 1977, Lecture Notes in Math., vol. 644, Springer-Verlag, 1978, pp. 73-82. | MR | Zbl
,[2] On polynomials chaos and integrability, Probab. Math. Statist. 3 (1984) 191-203. | MR | Zbl
,[3] C. Borell, On the Taylor series of a Wiener polynomial, in: Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and their Integration, Case Western Reserve University, Cleveland, 1984.
[4] L. Coutin, P. Friz, N. Victoir, Good rough path sequences and applications to anticipating & fractional stochastic calculus, ArXiv-preprint, 2005. | Zbl
[5] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields 122 (2002) 108-140. | MR | Zbl
, ,[6] L. Coutin, N. Victoir, Lévy area for Gaussian processes, preprint, 2005.
[7] Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, second ed., Springer-Verlag, New York, 1998, xvi+396 pp. | MR | Zbl
, ,[8] Curvilinear integrals along enriched paths, Electronic J. Probab. 11 (2006) 860-892. | MR | Zbl
, ,[9] Continuity of the Itô-map for Hölder rough path with applications to the Support Theorem in Hölder norm, in: Probability and Partial Differential Equations in Modern Applied Mathematics, IMA Volumes in Mathematics and its Applications, vol. 140, 2003, pp. 117-136. | MR | Zbl
,[10] Approximations of the Brownian rough path with applications to stochastic analysis, Ann. Inst. H. Poincaré Probab. Statist. 41 (4) (2005) 703-724. | Numdam | MR | Zbl
, ,[11] On the notion of geometric rough paths, Probab. Theory Relat. Fields 136 (3) (2006) 395-416. | MR | Zbl
, ,[12] A variation embedding theorem and applications, J. Funct. Anal. 239 (2) (2006) 631-637. | MR | Zbl
, ,[13] A note on uniform convergence of stochastic processes, Ann. Math. Statist. 41 (1970) 1360-1362. | MR | Zbl
, ,[14] Isoperimetry and Gaussian analysis, in: Lectures on Probability Theory and Statistics, Saint-Flour, 1994, Lecture Notes in Math., vol. 1648, Springer, Berlin, 1996, pp. 165-294. | MR | Zbl
,[15] Large deviations and support theorem for diffusion processes via rough paths, Stochastic Process. Appl. 102 (2) (2002) 265-283. | MR | Zbl
, , ,[16] Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215-310. | MR | Zbl
,[17] System Control and Rough Paths, Oxford University Press, 2002. | MR | Zbl
, ,[18] Large deviations for rough paths of the fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 42 (2) (2006) 245-271. | Numdam | MR | Zbl
, ,[19] A. Millet, M. Sanz-Sole, Approximation of rough paths of fractional Brownian motion, ArXiv-preprint, 2005.
[20] Fermeture en probabilité de certains sous-espaces d’un espace . Application aux chaos de Wiener, Z. Wahrsch. Verw. Gebiete 14 (1969/70) 36-48. | MR | Zbl
,Cité par Sources :