@article{AIHPB_2007__43_4_399_0, author = {Agrachev, A. and Kuksin, S. and Sarychev, A. and Shirikyan, A.}, title = {On finite-dimensional projections of distributions for solutions of randomly forced {2D} {Navier-Stokes} equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {399--415}, publisher = {Elsevier}, volume = {43}, number = {4}, year = {2007}, doi = {10.1016/j.anihpb.2006.06.001}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/} }
TY - JOUR AU - Agrachev, A. AU - Kuksin, S. AU - Sarychev, A. AU - Shirikyan, A. TI - On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 399 EP - 415 VL - 43 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/ DO - 10.1016/j.anihpb.2006.06.001 LA - en ID - AIHPB_2007__43_4_399_0 ER -
%0 Journal Article %A Agrachev, A. %A Kuksin, S. %A Sarychev, A. %A Shirikyan, A. %T On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 399-415 %V 43 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/ %R 10.1016/j.anihpb.2006.06.001 %G en %F AIHPB_2007__43_4_399_0
Agrachev, A.; Kuksin, S.; Sarychev, A.; Shirikyan, A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 4, pp. 399-415. doi : 10.1016/j.anihpb.2006.06.001. http://www.numdam.org/articles/10.1016/j.anihpb.2006.06.001/
[1] Navier-Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (1) (2005) 108-152. | Zbl
, ,[2] Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing, Comm. Math. Phys. 265 (2006) 673-697. | Zbl
, ,[3] Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. | MR | Zbl
,[4] Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal. 9 (1) (1998) 27-64. | MR | Zbl
, ,[5] Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988. | Zbl
, ,[6] The stochastic wave equation in two spatial dimensions, Ann. Probab. 26 (1) (1998) 187-212. | MR | Zbl
, ,[7] Zero one laws for probability measures on locally convex spaces, Math. Ann. 243 (2) (1979) 95-102. | EuDML | MR | Zbl
,[8] Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219 (2001) 523-565. | MR | Zbl
, ,[9] An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, New York, 1971. | MR | Zbl
,[10] Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA 1 (1994) 403-426. | Zbl
,[11] The Theory of Stochastic Processes. I, Springer-Verlag, Berlin, 1980. | MR | Zbl
, ,[12] Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
,[13] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. | MR | Zbl
,[14] Diffeomorphisms of function spaces that correspond to quasilinear parabolic equations, Mat. Sb. (N.S.) 117 (159) (1982) 359-378, 431. | MR | Zbl
,[15] The stochastic Burgers equation: finite moments and smoothness of the density, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (3) (2000) 363-385. | MR | Zbl
, , ,[16] Malliavin calculus for the stochastic 2D Navier-Stokes equation, Comm. Pure Appl. Math. 59 (12) (2006) 1742-1790. | Zbl
, ,[17] The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995. | MR | Zbl
,[18] Stochastic calculus of variations for stochastic partial differential equations, J. Funct. Anal. 79 (2) (1988) 288-331. | MR | Zbl
,[19] Lectures on Differential Geometry, Chelsea Publishing Co., New York, 1983. | MR | Zbl
,[20] Navier-Stokes Equations, North-Holland, Amsterdam, 1979. | Zbl
,[21] Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. | Zbl
, ,Cité par Sources :