Limiting behavior of a diffusion in an asymptotically stable environment
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 101-138.
@article{AIHPB_2007__43_1_101_0,
     author = {Singh, Arvind},
     title = {Limiting behavior of a diffusion in an asymptotically stable environment},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {101--138},
     publisher = {Elsevier},
     volume = {43},
     number = {1},
     year = {2007},
     doi = {10.1016/j.anihpb.2006.01.003},
     mrnumber = {2288272},
     zbl = {1123.60075},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2006.01.003/}
}
TY  - JOUR
AU  - Singh, Arvind
TI  - Limiting behavior of a diffusion in an asymptotically stable environment
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2007
SP  - 101
EP  - 138
VL  - 43
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2006.01.003/
DO  - 10.1016/j.anihpb.2006.01.003
LA  - en
ID  - AIHPB_2007__43_1_101_0
ER  - 
%0 Journal Article
%A Singh, Arvind
%T Limiting behavior of a diffusion in an asymptotically stable environment
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2007
%P 101-138
%V 43
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2006.01.003/
%R 10.1016/j.anihpb.2006.01.003
%G en
%F AIHPB_2007__43_1_101_0
Singh, Arvind. Limiting behavior of a diffusion in an asymptotically stable environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 101-138. doi : 10.1016/j.anihpb.2006.01.003. http://www.numdam.org/articles/10.1016/j.anihpb.2006.01.003/

[1] J. Bertoin, Lévy processes, Cambridge Tracts in Math., vol. 121, Cambridge University Press, Cambridge, 1996. | MR | Zbl

[2] J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc. 28 (5) (1996) 514-520. | MR | Zbl

[3] J. Bertoin, R.A. Doney, On conditioning a random walk to stay nonnegative, Ann. Probab. 22 (4) (1994) 2152-2167. | MR | Zbl

[4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1989. | MR | Zbl

[5] A.A. Borovkov, Large deviations probabilities for random walks in the absence of finite expectations of jumps, Probab. Theory Related Fields 125 (3) (2003) 421-446. | MR | Zbl

[6] Th. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab. 14 (4) (1986) 1206-1218. | MR | Zbl

[7] D. Cheliotis, One-dimensional diffusion in an asymmetric random environment, Ann. Inst. H. Poincaré Probab. Statist., in press, available at, http://www.math.toronto.edu/dimitris. | EuDML | Numdam | MR | Zbl

[8] R.A. Doney, Conditional limit theorems for asymptotically stable random walks, Z. Wahrsch. Verw. Gebiete 70 (3) (1985) 351-360. | MR | Zbl

[9] P. Erdös, On the law of the iterated logarithm, Ann. of Math. (2) 43 (1942) 419-436. | MR | Zbl

[10] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, John Wiley & Sons Inc., New York, 1966. | MR | Zbl

[11] C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhyā Ser. A 30 (1968) 253-258. | MR | Zbl

[12] Y. Hu, Z. Shi, The limits of Sinai's simple random walk in random environment, Ann. Probab. 26 (4) (1998) 1477-1521. | MR | Zbl

[13] K. Itô, H.P. Mckean, Diffusion Processes and their Sample Paths, Grundlehren Math. Wiss., Band 125, Academic Press Inc., New York, 1965. | MR | Zbl

[14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., vol. 288, Springer-Verlag, Berlin, 1987. | MR | Zbl

[15] K. Kawazu, Y. Tamura, H. Tanaka, Localization of diffusion processes in one-dimensional random environment, J. Math. Soc. Japan 44 (3) (1992) 515-550. | MR | Zbl

[16] S. Kochen, Ch. Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964) 248-251. | Zbl

[17] M.R. Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum, J. Theoret. Probab. 17 (1) (2004) 183-220. | MR | Zbl

[18] B.A. Rogozin, Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Veroyatnost. i Primenen. 16 (1971) 539-613. | MR | Zbl

[19] S. Schumacher, Diffusions with random coefficients, in: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984), Contemp. Math., vol. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 351-356. | MR | Zbl

[20] Z. Shi, Sinai's walk via stochastic calculus, Survey paper, available at, http://www.proba.jussieu.fr/pageperso/zhan/preprints.html. | MR

[21] A.V. Skorohod, Limit theorems for stochastic processes with independent increments, Teor. Veroyatnost. i Primenen. 2 (1957) 145-177. | MR | Zbl

[22] V.M. Zolotarev, One-Dimensional Stable Distributions, Transl. Math. Monogr., vol. 65, Amer. Math. Soc., Providence, RI, 1986, (Translated from the Russian by H.H. McFaden, translation edited by Ben Silver). | MR | Zbl

Cité par Sources :