On estimating the memory for finitarily markovian processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 15-30.
@article{AIHPB_2007__43_1_15_0,
     author = {Morvai, Guszt\'av and Weiss, Benjamin},
     title = {On estimating the memory for finitarily markovian processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {15--30},
     publisher = {Elsevier},
     volume = {43},
     number = {1},
     year = {2007},
     doi = {10.1016/j.anihpb.2005.11.001},
     mrnumber = {2288267},
     zbl = {1106.62094},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.11.001/}
}
TY  - JOUR
AU  - Morvai, Gusztáv
AU  - Weiss, Benjamin
TI  - On estimating the memory for finitarily markovian processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2007
SP  - 15
EP  - 30
VL  - 43
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2005.11.001/
DO  - 10.1016/j.anihpb.2005.11.001
LA  - en
ID  - AIHPB_2007__43_1_15_0
ER  - 
%0 Journal Article
%A Morvai, Gusztáv
%A Weiss, Benjamin
%T On estimating the memory for finitarily markovian processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2007
%P 15-30
%V 43
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2005.11.001/
%R 10.1016/j.anihpb.2005.11.001
%G en
%F AIHPB_2007__43_1_15_0
Morvai, Gusztáv; Weiss, Benjamin. On estimating the memory for finitarily markovian processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 15-30. doi : 10.1016/j.anihpb.2005.11.001. http://www.numdam.org/articles/10.1016/j.anihpb.2005.11.001/

[1] D.H. Bailey, Sequential schemes for classifying and predicting ergodic processes, Ph.D. thesis, Stanford University, 1976.

[2] P. Bühlmann, A.J. Wyner, Variable-length Markov chains, Ann. Statist. 27 (1999) 480-513. | MR | Zbl

[3] I. Csiszár, Large-scale typicality of Markov sample paths and consistency of MDL order estimators, IEEE Trans. Inform. Theory 48 (2002) 1616-1628. | MR | Zbl

[4] I. Csiszár, P. Shields, The consistency of the BIC Markov order estimator, Ann. Statist. 28 (2000) 1601-1619. | MR | Zbl

[5] I. Csiszár, Zs. Talata, Context tree estimation for not necessarily finite memory processes via BIC and MDL, IEEE Trans. Inform. Theory, in press. | MR

[6] A. Dembo, Y. Peres, A topological criterion for hypothesis testing, Ann. Statist. 22 (1994) 106-117. | MR | Zbl

[7] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. | MR | Zbl

[8] L. Györfi, G. Morvai, S. Yakowitz, Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory 44 (1998) 886-892. | MR | Zbl

[9] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl

[10] S. Kalikow, Y. Katznelson, B. Weiss, Finitarily deterministic generators for zero entropy systems, Israel J. Math. 79 (1992) 33-45. | MR | Zbl

[11] G. Morvai, Guessing the output of a stationary binary time series, in: Haitovsky Y., Lerche H.R., Ritov Y. (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. | MR

[12] G. Morvai, S. Yakowitz, L. Györfi, Nonparametric inference for ergodic, stationary time series, Ann. Statist. 24 (1996) 370-379. | MR | Zbl

[13] G. Morvai, B. Weiss, Forecasting for stationary binary time series, Acta Appl. Math. 79 (2003) 25-34. | MR | Zbl

[14] G. Morvai, B. Weiss, Intermittent estimation of stationary time series, Test 13 (2004) 525-542. | MR | Zbl

[15] G. Morvai, B. Weiss, Prediction for discrete time series, Probab. Theory Related Fields 132 (2005) 1-12. | MR | Zbl

[16] G. Morvai, B. Weiss, Order estimation of Markov chains, IEEE Trans. Inform. Theory 51 (2005) 1496-1497. | MR

[17] G. Morvai, B. Weiss, Limitations on intermittent forecasting, Statist. Probab. Lett. 72 (2005) 285-290. | MR | Zbl

[18] G. Morvai, B. Weiss, On classifying processes, Bernoulli 11 (2005) 523-532. | MR | Zbl

[19] G. Morvai, B. Weiss, Inferring the conditional mean, Theory Stochastic Process. 11 (1-2) (2005) 112-120.

[20] A. Nobel, Limits to classification and regression estimation from ergodic processes, Ann. Statist. 27 (1999) 262-273. | MR | Zbl

[21] D.S. Ornstein, Guessing the next output of a stationary process, Israel J. Math. 30 (1978) 292-296. | MR | Zbl

[22] D.S. Ornstein, B. Weiss, How sampling reveals a process, Ann. Probab. 18 (1990) 905-930. | MR | Zbl

[23] B.Ya. Ryabko, Prediction of random sequences and universal coding, Problems Inform. Trans. 24 (April-June 1988) 87-96. | Zbl

[24] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math., vol. 13, American Mathematical Society, Providence, RI, 1996. | MR | Zbl

Cité par Sources :