@article{AIHPB_2007__43_1_31_0, author = {Bousch, Thierry}, title = {Sur les retardateurs}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {31--46}, publisher = {Elsevier}, volume = {43}, number = {1}, year = {2007}, doi = {10.1016/j.anihpb.2005.09.002}, mrnumber = {2288268}, zbl = {1130.37316}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.002/} }
TY - JOUR AU - Bousch, Thierry TI - Sur les retardateurs JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 31 EP - 46 VL - 43 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.002/ DO - 10.1016/j.anihpb.2005.09.002 LA - fr ID - AIHPB_2007__43_1_31_0 ER -
Bousch, Thierry. Sur les retardateurs. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 1, pp. 31-46. doi : 10.1016/j.anihpb.2005.09.002. http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.002/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. | MR | Zbl
,[2] Synchronization and Linearity, Wiley, 1992. | MR | Zbl
, , , ,[3] T. Bousch, Fonctions topicales et causalité, manuscrit, 2003.
[4] T. Bousch, J. Mairesse, Fonctions topicales à portée finie et fonctions uniformément topicales, préprint 2003-002, LIAFA, 2003.
[5] Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980) 385-390. | MR | Zbl
, ,[6] On dominated ergodic theorems in , Tôhoku Math. J. 46 (1939) 150-153. | MR | Zbl
,[7] J. Gunawardena, Timing analysis of digital circuits and the theory of min-max functions, préprint HPL-94-39, Hewlett-Packard, 1994.
[8] Idempotency, Cambridge University Press, 1998. | MR
(Ed.),[9] From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems, Theoret. Comp. Sci. 293 (2003) 141-167. | MR | Zbl
,[10] J. Gunawardena, M. Keane, On the existence of cycle times for some non-expansive maps, préprint HPL-BRIMS-95-003, Hewlett-Packard, 1995.
[11] The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. B 30 (1968) 499-510. | MR | Zbl
,[12] Ergodic Theorems, de Gruyter, 1985. | MR | Zbl
,[13] Poincaré rotation number for maps of the real line with almost periodic displacement, Nonlinearity 13 (2000) 1841-1854. | MR | Zbl
,[14] Kingman's subadditive ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 93-98. | Numdam | MR | Zbl
,[15] The ergodic theorem, Duke Math. J. 5 (1939) 1-18. | JFM | MR
,Cité par Sources :