@article{AIHPB_2005__41_5_953_0, author = {Daviaud, Olivier}, title = {Thick points for the {Cauchy} process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {953--970}, publisher = {Elsevier}, volume = {41}, number = {5}, year = {2005}, doi = {10.1016/j.anihpb.2004.10.001}, mrnumber = {2165259}, zbl = {1074.60084}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/} }
TY - JOUR AU - Daviaud, Olivier TI - Thick points for the Cauchy process JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 953 EP - 970 VL - 41 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/ DO - 10.1016/j.anihpb.2004.10.001 LA - en ID - AIHPB_2005__41_5_953_0 ER -
Daviaud, Olivier. Thick points for the Cauchy process. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 953-970. doi : 10.1016/j.anihpb.2004.10.001. http://www.numdam.org/articles/10.1016/j.anihpb.2004.10.001/
[1] Complex Analysis, McGraw-Hill, 1979. | MR | Zbl
,[2] Levy Processes, Cambridge University Press, New York, 1996. | MR | Zbl
,[3] Local time for a class of Markov processes, Illinois J. Math. 8 (1964) 19-39. | MR | Zbl
,[4] Thick points for transient symmetric stable processes, Electronic J. Probab. 4 (10) (1999) 1-13. | MR | Zbl
, , , ,[5] Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28 (2000) 1-35. | MR | Zbl
, , , ,[6] Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk, Acta Math. 186 (2001) 239-270. | MR | Zbl
, , , ,[7] Thick points for intersections of planar Brownian paths, Trans. Amer. Math. Soc. 354 (2002) 4969-5003. | MR | Zbl
, , , ,[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. | MR | Zbl
, ,[9] Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991. | MR | Zbl
, ,[10] Slow points and fast points of local times, Ann. Probab. 27 (1999) 150-165. | MR | Zbl
,[11] Uniform measure results for the image of subsets under Brownian motion, Probab. Theory Related Fields 76 (1987) 257-289. | MR | Zbl
, ,[12] Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion, Trans. Amer. Math. Soc. 106 (1963) 436-444. | MR | Zbl
,[13] Continuous Martingales and Brownian Motion, Springer-Verlag, 1998. | Zbl
, ,[14] Logarithmic multifractal spectrum of stable occupation measure, Stochastic Process Appl. 79 (1998) 249-261. | MR | Zbl
, ,[15] The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963) 631-637. | MR | Zbl
,Cité par Sources :