@article{AIHPB_2005__41_3_559_0, author = {Jin, Hanqing and Yan, Jia-An and Zhou, Xun Yu}, title = {Continuous-time mean-risk portfolio selection}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {559--580}, publisher = {Elsevier}, volume = {41}, number = {3}, year = {2005}, doi = {10.1016/j.anihpb.2004.09.009}, zbl = {02191867}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.009/} }
TY - JOUR AU - Jin, Hanqing AU - Yan, Jia-An AU - Zhou, Xun Yu TI - Continuous-time mean-risk portfolio selection JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 559 EP - 580 VL - 41 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.009/ DO - 10.1016/j.anihpb.2004.09.009 LA - en ID - AIHPB_2005__41_3_559_0 ER -
%0 Journal Article %A Jin, Hanqing %A Yan, Jia-An %A Zhou, Xun Yu %T Continuous-time mean-risk portfolio selection %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 559-580 %V 41 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.009/ %R 10.1016/j.anihpb.2004.09.009 %G en %F AIHPB_2005__41_3_559_0
Jin, Hanqing; Yan, Jia-An; Zhou, Xun Yu. Continuous-time mean-risk portfolio selection. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 3, pp. 559-580. doi : 10.1016/j.anihpb.2004.09.009. http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.009/
[1] T.R. Bielecki, S.R. Pliska, H. Jin, X.Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Math. Finance, in press. | MR | Zbl
[2] Portfolio optimization under a minimax rule, Manag. Sci. 46 (2000) 957-972.
, , , ,[3] On dynamic measures of risk, Finance Stochast. 3 (1999) 451-482. | MR | Zbl
, ,[4] Backward stochastic differential equations in finance, Math. Finance 7 (1997) 1-71. | MR | Zbl
, , ,[5] Mathematics of Financial Markets, Springer-Verlag, New York, 1999. | MR | Zbl
, ,[6] Mean-risk analysis with risk associated with below-target returns, Amer. Econ. Rev. 67 (1977) 116-126.
,[7] Quantile hedging, Finance Stochast. 3 (1999) 251-273. | MR | Zbl
, ,[8] H. Jin, X.Y. Zhou, Continuous-time Markowitz's problems in an incomplete market, with constrained portfolios, Working paper, 2004.
[9] Vale at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York, 2001.
,[10] Methods of Mathematical Finance, Springer-Verlag, New York, 1998. | MR | Zbl
, ,[11] Optimal control of a favorable game with a time-limit, SIAM J. Contr. Optim. 31 (1993) 52-69. | MR | Zbl
,[12] Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market, Manag. Sci. 37 (1991) 519-531.
, ,[13] Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM J. Contr. Optim. 40 (2001) 1540-1555. | MR | Zbl
, , ,[14] Mean-variance portfolio selection with random parameters in a complete market, Math. Oper. Res. 27 (2002) 101-120. | MR | Zbl
, ,[15] Solving forward-backward stochastic differential equations explicitly - a four step scheme, Prob. Theory Related Fields 98 (1994) 339-359. | MR | Zbl
, , ,[16] Forward-Backward Stochastic Differential Equations and Their Applications, Lect. Notes in Math., vol. 1702, Springer-Verlag, New York, 1999. | MR | Zbl
, ,[17] Portfolio selection, J. Finance 7 (1952) 77-91.
,[18] Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959. | MR
,[19] A brief history of downside risk measures, J. Investing 8 (1999) 9-25.
,[20] A discrete time stochastic decision model, in: , (Eds.), Advances in Filtering and Optimal Stochastic Control, Lecture Notes in Control and Information Sci., vol. 42, Springer-Verlag, New York, 1982, pp. 290-304. | MR | Zbl
,[21] Convex Analysis, Princeton University Press, Princeton, 1970. | MR | Zbl
,[22] Downside risk, J. Portfolio Manag. 17 (1991) 27-31.
, ,[23] Markowitz revisited: mean-variance models in financial portfolio analysis, SIAM Rev. 43 (2001) 31-85. | MR | Zbl
,[24] Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999. | MR | Zbl
, ,[25] Markowitz's world in continuous-time, and beyond, in: , (Eds.), Stochastic Modeling and Optimization, Springer, New York, 2003, pp. 279-310. | MR | Zbl
,[26] Continuous time mean-variance portfolio selection: a stochastic LQ framework, Appl. Math. Optim. 42 (2000) 19-33. | MR | Zbl
, ,Cité par Sources :