Forward estimation for ergodic time series
Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 859-870.
@article{AIHPB_2005__41_5_859_0,
     author = {Morvai, Guszt\'av and Weiss, Benjamin},
     title = {Forward estimation for ergodic time series},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {859--870},
     publisher = {Elsevier},
     volume = {41},
     number = {5},
     year = {2005},
     doi = {10.1016/j.anihpb.2004.07.002},
     mrnumber = {2165254},
     zbl = {1070.62073},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.07.002/}
}
TY  - JOUR
AU  - Morvai, Gusztáv
AU  - Weiss, Benjamin
TI  - Forward estimation for ergodic time series
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2005
SP  - 859
EP  - 870
VL  - 41
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2004.07.002/
DO  - 10.1016/j.anihpb.2004.07.002
LA  - en
ID  - AIHPB_2005__41_5_859_0
ER  - 
%0 Journal Article
%A Morvai, Gusztáv
%A Weiss, Benjamin
%T Forward estimation for ergodic time series
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2005
%P 859-870
%V 41
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2004.07.002/
%R 10.1016/j.anihpb.2004.07.002
%G en
%F AIHPB_2005__41_5_859_0
Morvai, Gusztáv; Weiss, Benjamin. Forward estimation for ergodic time series. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 5, pp. 859-870. doi : 10.1016/j.anihpb.2004.07.002. http://www.numdam.org/articles/10.1016/j.anihpb.2004.07.002/

[1] P. Algoet, Universal schemes for prediction, gambling and portfolio selection, Ann. Probab. 20 (1992) 901-941, Correction, Ann. Probab. 23 (1995) 474-478. | MR | Zbl

[2] P. Algoet, The strong low of large numbers for sequential decisions under uncertainty, IEEE Trans. Inform. Theory 40 (1994) 609-634. | MR | Zbl

[3] P. Algoet, Universal schemes for learning the best nonlinear predictor given the infinite past and side information, IEEE Trans. Inform. Theory 45 (1999) 1165-1185. | MR | Zbl

[4] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J. 37 (1967) 357-367. | MR | Zbl

[5] D.H. Bailey, Sequential Schemes for Classifying and Predicting Ergodic Processes, Ph.D. thesis, Stanford University, 1976.

[6] T.M. Cover, Open problems in information theory, in: 1975 IEEE Joint Workshop on Information Theory, IEEE Press, New York, 1975, pp. 35-36. | MR

[7] R.M. Gray, Probability, Random Processes, and Ergodic Properties, Springer-Verlag, New York, 1988. | MR | Zbl

[8] L. Györfi, M. Kohler, A. Krzyżak, H. Walk, A Distribution Free Theory of Nonparametric Regression, Springer-Verlag, New York, 2002. | MR | Zbl

[9] L. Györfi, G. Lugosi, Strategies for sequential prediction of stationary time series, in: Dror M., L'Ecuyer P., Szidarovszky F. (Eds.), Modeling Uncertainty an Examination of Stochastic Theory, Methods, and Applications, Kluwer Academic, 2002, pp. 225-248. | MR

[10] L. Györfi, G. Lugosi, G. Morvai, A simple randomized algorithm for consistent sequential prediction of ergodic time series, IEEE Trans. Inform. Theory 45 (1999) 2642-2650. | MR | Zbl

[11] L. Györfi, G. Morvai, S. Yakowitz, Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory 44 (1998) 886-892. | MR | Zbl

[12] S. Kalikow, Random Markov processes and uniform martingales, Israel J. Math. 71 (1990) 33-54. | MR | Zbl

[13] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1972) 309-324. | MR | Zbl

[14] Ph.T. Maker, The ergodic theorem for a sequence of functions, Duke Math. J. 6 (1940) 27-30. | JFM | MR

[15] G. Morvai, Estimation of conditional distribution for stationary time series, Ph.D. thesis, Technical University of Budapest, 1994.

[16] G. Morvai, Guessing the output of a stationary binary time series, in: Haitovsky Y., Lerche H.R., Ritov Y. (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. | MR

[17] G. Morvai, B. Weiss, Forecasting for stationary binary time series, Acta Appl. Math. 79 (2003) 25-34. | MR | Zbl

[18] G. Morvai, S. Yakowitz, P. Algoet, Weakly convergent nonparametric forecasting of stationary time series, IEEE Trans. Inform. Theory 43 (1997) 483-498. | MR | Zbl

[19] G. Morvai, S. Yakowitz, L. Györfi, Nonparametric inferences for ergodic, stationary time series, Ann. Statist. 24 (1996) 370-379. | MR | Zbl

[20] D.S. Ornstein, Guessing the next output of a stationary process, Israel J. Math. 30 (1978) 292-296. | MR | Zbl

[21] D.S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, 1974. | MR | Zbl

[22] B.Ya. Ryabko, Prediction of random sequences and universal coding, Problems Inform. Transmission 24 (April-June 1988) 87-96. | MR | Zbl

[23] P.C. Shields, Cutting and stacking: a method for constructing stationary processes, IEEE Trans. Inform. Theory 37 (1991) 1605-1614. | MR | Zbl

[24] B. Weiss, Single Orbit Dynamics, American Mathematical Society, 2000. | MR | Zbl

Cité par Sources :