Probability Theory/Ordinary Differential Equations
Asymptotic behavior for doubly degenerate parabolic equations
[Comportement asymptotique des équations paraboliques doublement dégénérées]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 5, pp. 331-336.

Nous utilisons des inégalités de transport de masse pour étudier le comportement asymptotique des équations paraboliques doublement dégénérées de la forme (1), où Ω est soit n , ou un domaine borné de n auquel cas ρc * [(F'(ρ)+V)]·ν=0 sur (0,)×Ω. Nous examinons le cas où le potentiel V est uniformément c-convexe, et le cas dégénéré où V=0. Dans ces deux cas, nous montrons une décroissance exponentielle de la différence d'entropies et de la distance de Wasserstein – suivant le coût c – des solutions de l'équation et de sa solution stationnaire, et nous précisons les taux de convergence. En particulier, nous généralisons à tous les p>1 les inégalités HWI obtenues dans Otto et Villani (J. Funct. Anal. 173 (2) (2000) 361–400) lorsque p=2. Cette classe d'équations contient les équations de Fokker–Planck, des milieux poreux et du p-Laplacien.

We use mass transportation inequalities to study the asymptotic behavior for a class of doubly degenerate parabolic equations of the form

ρ t= div ρc * F'(ρ)+V in (0,)×Ω, and ρ(t=0)=ρ 0 in {0}×Ω,(1)
where Ω is n , or a bounded domain of n in which case ρc * [(F'(ρ)+V)]·ν=0 on (0,)×Ω. We investigate the case where the potential V is uniformly c-convex, and the degenerate case where V=0. In both cases, we establish an exponential decay in relative entropy and in the c-Wasserstein distance of solutions – or self-similar solutions – of (1) to equilibrium, and we give the explicit rates of convergence. In particular, we generalize to all p>1, the HWI inequalities obtained by Otto and Villani (J. Funct. Anal. 173 (2) (2000) 361–400) when p=2. This class of PDEs includes the Fokker–Planck, the porous medium, fast diffusion and the parabolic p-Laplacian equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00352-2
Agueh, Martial 1

1 Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada
@article{CRMATH_2003__337_5_331_0,
     author = {Agueh, Martial},
     title = {Asymptotic behavior for doubly degenerate parabolic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {331--336},
     publisher = {Elsevier},
     volume = {337},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00352-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00352-2/}
}
TY  - JOUR
AU  - Agueh, Martial
TI  - Asymptotic behavior for doubly degenerate parabolic equations
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 331
EP  - 336
VL  - 337
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00352-2/
DO  - 10.1016/S1631-073X(03)00352-2
LA  - en
ID  - CRMATH_2003__337_5_331_0
ER  - 
%0 Journal Article
%A Agueh, Martial
%T Asymptotic behavior for doubly degenerate parabolic equations
%J Comptes Rendus. Mathématique
%D 2003
%P 331-336
%V 337
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00352-2/
%R 10.1016/S1631-073X(03)00352-2
%G en
%F CRMATH_2003__337_5_331_0
Agueh, Martial. Asymptotic behavior for doubly degenerate parabolic equations. Comptes Rendus. Mathématique, Tome 337 (2003) no. 5, pp. 331-336. doi : 10.1016/S1631-073X(03)00352-2. http://www.numdam.org/articles/10.1016/S1631-073X(03)00352-2/

[1] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Preprint, 2002

[2] M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases, GAFA (2003), in press

[3] Carrillo, J.A.; Jüngel, A.; Markowich, P.A.; Toscani, G.; Unterreiter, A. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001) no. 1, pp. 1-82

[4] D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generalized entropy and optimal transportation, in: Proceedings of the Workshop: Mass Transportation Methods in Kinetic Theory and Hydrodynamics, in press

[5] Del Pino, M.; Dolbeault, J. Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 5, pp. 365-370

[6] Kamin, S.; Vázquez, J.L. Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354

[7] Otto, F. The geometry of dissipative evolution equation: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174

[8] Otto, F.; Villani, C. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000) no. 2, pp. 361-400

Cité par Sources :