Le résultat principal est que tout sous-groupe d'indice fini dans un groupe profini de type fini est ouvert. Par conséquent, la topologie d'un tel groupe est uniquement déterminée par la structure de groupe sous-jacente. Ce résultat se déduit d'un « théorème d'uniformité » pour les groupes finis : soit w un mot tel que la variété de groupes associée est localement finie, et soit d un entier. Si G est un groupe fini ayant d générateurs, alors chaque élément du sous-groupe verbal w(G) est produit de fw(d) valeurs de w dans G. On obtient des résultats analogues pour le sous-groupe dérivé.
We prove that every subgroup of finite index in a (topologically) finitely generated profinite group is open. This implies that the topology in such a group is uniquely determined by the group structure. The result follows from a ‘uniformity theorem’ about finite groups: given a group word w that defines a locally finite variety and a natural number d, there exists f=fw(d) such that in every finite d-generator group G, each element of the verbal subgroup w(G) is a product of f w-values. Similar methods show that in a finite d-generator group, each element of the derived group is a product of g(d) commutators; this implies that the (abstract) derived group in any finitely generated profinite group is closed.
Accepté le :
Publié le :
@article{CRMATH_2003__337_5_303_0, author = {Nikolov, Nikolay and Segal, Dan}, title = {Finite index subgroups in profinite groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--308}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2003}, doi = {10.1016/S1631-073X(03)00349-2}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00349-2/} }
TY - JOUR AU - Nikolov, Nikolay AU - Segal, Dan TI - Finite index subgroups in profinite groups JO - Comptes Rendus. Mathématique PY - 2003 SP - 303 EP - 308 VL - 337 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00349-2/ DO - 10.1016/S1631-073X(03)00349-2 LA - en ID - CRMATH_2003__337_5_303_0 ER -
%0 Journal Article %A Nikolov, Nikolay %A Segal, Dan %T Finite index subgroups in profinite groups %J Comptes Rendus. Mathématique %D 2003 %P 303-308 %V 337 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00349-2/ %R 10.1016/S1631-073X(03)00349-2 %G en %F CRMATH_2003__337_5_303_0
Nikolov, Nikolay; Segal, Dan. Finite index subgroups in profinite groups. Comptes Rendus. Mathématique, Tome 337 (2003) no. 5, pp. 303-308. doi : 10.1016/S1631-073X(03)00349-2. http://www.numdam.org/articles/10.1016/S1631-073X(03)00349-2/
[1] Finite linear groups and bounded generation, Duke Math. J., Volume 107 (2001), pp. 159-171
[2] Diameters of finite simple groups: sharp bounds and applications, Ann. of Math., Volume 154 (2001), pp. 383-406
[3] Varieties of Groups, Ergeb. Math., 37, Springer-Verlag, Berlin, 1967
[4] N. Nikolov, Power subgroups of profinite groups. D.Phil. thesis, University of Oxford, 2002
[5] N. Nikolov, On the commutator width of perfect groups, Bull. London Math. Soc., in press
[6] Identical relations in finite groups, J. Algebra, Volume 1 (1964), pp. 11-39
[7] Width of verbal subgroups in solvable groups, Algebra i Logika, Volume 21 (1982), pp. 60-72 (in Russian). English translation Algebra and Logic, 21, 1982, pp. 41-49
[8] Profinite Groups, Ergeb. Math. (3), 40, Springer, Berlin, 2000
[9] Closed subgroups of profinite groups, Proc. London Math. Soc. (3), Volume 81 (2000), pp. 29-54
[10] On simple pseudofinite groups, J. London Math. Soc. (2), Volume 51 (1995), pp. 471-490
Cité par Sources :