On démontre un théorème de structure pour les algèbres de Hopf colibres : une telle algèbre de Hopf est isomorphe à l'algèbre diptère enveloppante de sa partie primitive. Une algèbre diptère est une algèbre associative munie d'une structure de module à gauche sur elle-même. Ce résultat est une conséquence d'un analogue, dans le contexte non-cocommutatif, du théorème de Poincaré–Birkhoff–Witt et du théorème de Milnor–Moore.
We prove a structure theorem for the cofree Hopf algebras: such a Hopf algebra is the universal enveloping dipterous algebra of its primitive part. A dipterous algebra is an associative algebra equipped with a structure of left module over itself. This theorem is a consequence of an analogue, in the non-cocommutative framework, of the Poincaré–Birkhoff–Witt theorem and of the Milnor–Moore theorem.
Publié le :
@article{CRMATH_2003__337_3_153_0, author = {Loday, Jean-Louis and Ronco, Mar{\i}́a}, title = {Alg\`ebres de {Hopf} colibres}, journal = {Comptes Rendus. Math\'ematique}, pages = {153--158}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00288-7}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00288-7/} }
TY - JOUR AU - Loday, Jean-Louis AU - Ronco, Marı́a TI - Algèbres de Hopf colibres JO - Comptes Rendus. Mathématique PY - 2003 SP - 153 EP - 158 VL - 337 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00288-7/ DO - 10.1016/S1631-073X(03)00288-7 LA - fr ID - CRMATH_2003__337_3_153_0 ER -
Loday, Jean-Louis; Ronco, Marı́a. Algèbres de Hopf colibres. Comptes Rendus. Mathématique, Tome 337 (2003) no. 3, pp. 153-158. doi : 10.1016/S1631-073X(03)00288-7. http://www.numdam.org/articles/10.1016/S1631-073X(03)00288-7/
[1] Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices, Volume 3 (1995), pp. 141-153
[2] Dialgebras, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, pp. 7-66
[3] J.-L. Loday, Scindement d'associativité et algèbres de Hopf, Actes du Colloque en l'honneur de Jean Leray (Nantes, 2002), à paraı̂tre
[4] Hopf algebra of the planar binary trees, Adv. Math., Volume 139 (1998), pp. 293-309
[5] J.-L. Loday, M. Ronco, Trialgebras and families of polytopes, Preprint, 2002, ArXiv | arXiv
[6] On the structure of Hopf algebras, Ann. of Math. (2), Volume 81 (1965), pp. 211-264
[7] Sets with two associative operations, C.E.J.M., Volume 2 (2003), pp. 169-183
[8] Rational homotopy theory, Ann. of Math. (2), Volume 90 (1969), pp. 205-295
[9] A Milnor–Moore theorem for dendriform Hopf algebras, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001) no. 2, pp. 109-114
[10] Eulerian idempotents and Milnor–Moore theorem for certain non-cocommutative Hopf algebras, J. Algebra, Volume 254 (2002) no. 1, pp. 152-172
[11] Homotopy Gerstenhaber algebras, Conférence Moshé Flato, Dijon, 1999, Vol. II, Math. Phys. Stud., 22, Kluwer Academic, Dordrecht, 2000, pp. 307-331
Cité par Sources :