On établit un théorème d'indice S1-équivariant pour les opérateurs de Dirac sur des variétés. On donne une application de ce résultat, qui généralise le théorème d'Atiyah–Hirzebruch sur les actions de S1 aux variétés.
We establish an S1-equivariant index theorem for Dirac operators on -manifolds. As an application, we generalize the Atiyah–Hirzebruch vanishing theorem for S1-actions on closed spin manifolds to the case of -manifolds.
Accepté le :
Publié le :
@article{CRMATH_2003__337_1_57_0, author = {Zhang, Weiping}, title = {Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {57--60}, publisher = {Elsevier}, volume = {337}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(03)00279-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00279-6/} }
TY - JOUR AU - Zhang, Weiping TI - Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds JO - Comptes Rendus. Mathématique PY - 2003 SP - 57 EP - 60 VL - 337 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00279-6/ DO - 10.1016/S1631-073X(03)00279-6 LA - en ID - CRMATH_2003__337_1_57_0 ER -
Zhang, Weiping. Circle actions and $ \mathrm{Z}\mathrm{/k}$-manifolds. Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 57-60. doi : 10.1016/S1631-073X(03)00279-6. http://www.numdam.org/articles/10.1016/S1631-073X(03)00279-6/
[1] Spin manifolds and groups actions (Haefliger, A.; Narasimhan, R., eds.), Essays on Topology and Related Topics, Mémoirée dédié à Georges de Rham, Springer-Verlag, 1970, pp. 18-28
[2] Spectral asymmetry and Riemannian geometry I, Proc. Cambridge Philos. Soc., Volume 77 (1975), pp. 43-69
[3] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[4] Real embeddings and eta invariant, Math. Ann., Volume 295 (1993), pp. 661-684
[5] Real embeddings and the Atiyah–Patodi–Singer index theorem for Dirac operators, Asian J. Math., Volume 4 (2000), pp. 775-794
[6] -manifolds and families of Dirac operators, Invent. Math., Volume 92 (1988), pp. 243-254
[7] A mod k index theorem, Invent. Math., Volume 107 (1992), pp. 283-299
[8] Rigidity and vanishing theorems in K-theory, Comm. Anal. Geom., Volume 11 (2003), pp. 121-180
[9] Quantization formula for symplectic manifolds with boundary, Geom. Funct. Anal., Volume 9 (1999), pp. 596-640
[10] Fermion quantum numbers in Kaluza–Klein theory (Jackiw, R. et al., eds.), Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field theory and the Fundamental Problems of Physics, MIT Press, 1985, pp. 227-277
Cité par Sources :