Functional Analysis
A class of Banach spaces with no unconditional basic sequence
[Une classe d'espace de Banach sans suite basique inconditionnelle]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 43-48.

Nous construisons un espace de Banach réflexif Xω1 ayant une base transfinie de longueur ω1 et n'admettant aucune suite basique inconditionnelle. De plus, tout opérateur borné d'un sous-espace de Xω1 dans cet espace est somme d'un opérateur diagonal très simple et d'un opérateur strictement singulier.

We give a construction of a reflexive Banach space Xω1 with a transfinite basis of length ω1 and with no unconditional basic sequence. In addition every bounded operator from a subspace of Xω1 into the space Xω1 is a sum of a simple diagonal operator and a strictly singular one.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00272-3
Argyros, Spiros A. 1 ; Lopez-Abad, Jordi 2 ; Todorcevic, Stevo 3

1 Department of Mathematics, National Technical University of Athens, Zogratou Campus, 15780 Athens, Greece
2 Équipe de logique mathématique, Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
3 CNRS–Université Paris VII, 2, place Jussieu, 75251 Paris cedex, France
@article{CRMATH_2003__337_1_43_0,
     author = {Argyros, Spiros A. and Lopez-Abad, Jordi and Todorcevic, Stevo},
     title = {A class of {Banach} spaces with no unconditional basic sequence},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {43--48},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00272-3},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00272-3/}
}
TY  - JOUR
AU  - Argyros, Spiros A.
AU  - Lopez-Abad, Jordi
AU  - Todorcevic, Stevo
TI  - A class of Banach spaces with no unconditional basic sequence
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 43
EP  - 48
VL  - 337
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00272-3/
DO  - 10.1016/S1631-073X(03)00272-3
LA  - en
ID  - CRMATH_2003__337_1_43_0
ER  - 
%0 Journal Article
%A Argyros, Spiros A.
%A Lopez-Abad, Jordi
%A Todorcevic, Stevo
%T A class of Banach spaces with no unconditional basic sequence
%J Comptes Rendus. Mathématique
%D 2003
%P 43-48
%V 337
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00272-3/
%R 10.1016/S1631-073X(03)00272-3
%G en
%F CRMATH_2003__337_1_43_0
Argyros, Spiros A.; Lopez-Abad, Jordi; Todorcevic, Stevo. A class of Banach spaces with no unconditional basic sequence. Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 43-48. doi : 10.1016/S1631-073X(03)00272-3. http://www.numdam.org/articles/10.1016/S1631-073X(03)00272-3/

[1] Argyros, S.A.; Deliyanni, I. Examples of asymptotic ℓ1 Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 973-995

[2] S.A. Argyros, A. Manoussakis, An indecomposable and unconditionally saturated Banach space, Studia Math., to appear

[3] S.A. Argyros, A. Tolias, Indecomposability and unconditionality in duality, Preprint

[4] Bellenot, S.; Haydon, R.; Odell, E. Quasi reflexive and tree spaces constructed in the spirit of R.C. James, Contemp. Math., Volume 85 (1989), pp. 19-43

[5] Edgar, G.A. A long James space, Proc. Conf. on Measure Theory, Lecture Notes in Math., 794, 1980, pp. 31-37

[6] Gowers, W.T. A solution to Banach's hyperplane problem, Bull. London Math. Soc., Volume 28 (1996), pp. 297-304

[7] Gowers, W.T.; Maurey, B. The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993), pp. 851-874

[8] Lindenstrauss, J. On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 967-970

[9] Schlumprecht, Th. An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991), pp. 81-95

[10] Todorcevic, S. Partitioning pairs of countable ordinals, Acta Math., Volume 159 (1987), pp. 261-294

[11] S. Todorcevic, Coherent sequences, in: Handbook of Set Theory, to appear

Cité par Sources :