Soit le cercle unité dans On note BMO l'espace BMO classique et l'on note BMO l'espace BMO dyadique usuel sur Pour certaines valeurs de , nous montrons que l'espace BMO coı̈ncide avec l'intersection de BMO et du translaté par δ de BMO, en d'autres termes que l'on a
Let be the unit circle on . Denote by BMO the classical BMO space and denote by BMO the usual dyadic BMO space on . Then, for suitably chosen we have
Accepté le :
Publié le :
@article{CRMATH_2003__336_12_1003_0, author = {Mei, Tao}, title = {BMO is the intersection of two translates of dyadic {BMO}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1003--1006}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00234-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00234-6/} }
TY - JOUR AU - Mei, Tao TI - BMO is the intersection of two translates of dyadic BMO JO - Comptes Rendus. Mathématique PY - 2003 SP - 1003 EP - 1006 VL - 336 IS - 12 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00234-6/ DO - 10.1016/S1631-073X(03)00234-6 LA - en ID - CRMATH_2003__336_12_1003_0 ER -
%0 Journal Article %A Mei, Tao %T BMO is the intersection of two translates of dyadic BMO %J Comptes Rendus. Mathématique %D 2003 %P 1003-1006 %V 336 %N 12 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00234-6/ %R 10.1016/S1631-073X(03)00234-6 %G en %F CRMATH_2003__336_12_1003_0
Mei, Tao. BMO is the intersection of two translates of dyadic BMO. Comptes Rendus. Mathématique, Tome 336 (2003) no. 12, pp. 1003-1006. doi : 10.1016/S1631-073X(03)00234-6. http://www.numdam.org/articles/10.1016/S1631-073X(03)00234-6/
[1] BMO from dyadic BMO, Pacific J. Math., Volume 99 (1982) no. 2, pp. 351-371
[2] Bounded Analytic Functions, Pure Appl. Math., 96, Academic Press, New York, 1981
[3] T. Mei, Operator valued Hardy spaces, Preprint
[4] Dyadic shifts and a logarithmic estimate for Hankel operator with matrix symbol, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 455-460
Cité par Sources :