Dynamical Systems
On the cohomological equation for interval exchange maps
[Sur l'équation cohomologique pour les échanges d'intervalles]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 941-948.

On présente une classe explicite d'échanges d'intervalles T, de mesure pleine, pour laquelle l'équation cohomologique ΨΨT=Φ admet une solution bornée Ψ, à condition que la donnée Φ appartienne à un sous-espace de codimension finie de l'espace des fonctions dont la dérivée sur chaque intervalle est de variation bornée.

Cette classe est définie par une condition diophantienne « de type Roth » exprimé dans une variante du développement en fraction continue de Rauzy–Veech–Zorich associé à T.

We exhibit an explicit full measure class of minimal interval exchange maps T for which the cohomological equation ΨΨT=Φ has a bounded solution Ψ provided that the datum Φ belongs to a finite codimension subspace of the space of functions having on each interval a derivative of bounded variation.

The class of interval exchange maps is characterized in terms of a diophantine condition of “Roth type” imposed to an acceleration of the Rauzy–Veech–Zorich continued fraction expansion associated to T.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00222-X
Marmi, Stefano 1, 2 ; Moussa, Pierre 3 ; Yoccoz, Jean-Christophe 4

1 Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, Loc. Rizzi, 33100 Udine, Italy
2 Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
3 Service de physique théorique, CEA/Saclay, 91191 Gif-Sur-Yvette, France
4 Collège de France, 3, rue d'Ulm, 75005 Paris, France
@article{CRMATH_2003__336_11_941_0,
     author = {Marmi, Stefano and Moussa, Pierre and Yoccoz, Jean-Christophe},
     title = {On the cohomological equation for interval exchange maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {941--948},
     publisher = {Elsevier},
     volume = {336},
     number = {11},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00222-X},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00222-X/}
}
TY  - JOUR
AU  - Marmi, Stefano
AU  - Moussa, Pierre
AU  - Yoccoz, Jean-Christophe
TI  - On the cohomological equation for interval exchange maps
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 941
EP  - 948
VL  - 336
IS  - 11
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00222-X/
DO  - 10.1016/S1631-073X(03)00222-X
LA  - en
ID  - CRMATH_2003__336_11_941_0
ER  - 
%0 Journal Article
%A Marmi, Stefano
%A Moussa, Pierre
%A Yoccoz, Jean-Christophe
%T On the cohomological equation for interval exchange maps
%J Comptes Rendus. Mathématique
%D 2003
%P 941-948
%V 336
%N 11
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00222-X/
%R 10.1016/S1631-073X(03)00222-X
%G en
%F CRMATH_2003__336_11_941_0
Marmi, Stefano; Moussa, Pierre; Yoccoz, Jean-Christophe. On the cohomological equation for interval exchange maps. Comptes Rendus. Mathématique, Tome 336 (2003) no. 11, pp. 941-948. doi : 10.1016/S1631-073X(03)00222-X. http://www.numdam.org/articles/10.1016/S1631-073X(03)00222-X/

[1] Forni, G. Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. of Math., Volume 146 (1997), pp. 295-344

[2] Gottschalk, W.H.; Hedlund, G.A. Topological dynamics, Amer. Math. Soc. Collog. Publ., Volume 36 (1955)

[3] Keane, M. Interval exchange transformations, Math. Z., Volume 141 (1975), pp. 25-31

[4] Keane, M. Non-ergodic interval exchange transformations, Israel J. Math., Volume 26 (1977), pp. 188-196

[5] Keynes, H.B.; Newton, D. A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z., Volume 148 (1976), pp. 101-105

[6] Masur, H. Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200

[7] Rauzy, G. Échanges d'intervalles et transformations induites, Acta Arit. (1979), pp. 315-328

[8] Veech, W. Interval exchange transformations, J. Anal. Math., Volume 33 (1978), pp. 222-272

[9] Veech, W. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242

[10] Zorich, A. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, Volume 46 (1996) no. 2, pp. 325-370

[11] Zorich, A. Deviation for interval exchange transformations, Ergodic Theory Dynamical Systems, Volume 17 (1997), pp. 1477-1499

Cité par Sources :