Statistics/Probability Theory
Dual representation of φ-divergences and applications
[Représentation duale des φ-divergences et applications]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 857-862.

Dans cette Note, nous donnons une représentation « duale » des divergences. Nous utilisons cette représentation pour définir et étudier de nouveaux estimateurs de la loi et des divergences pour des modèles paramétriques discrets et continus.

In this Note, we give a “dual” representation of divergences. We make use of this representation to define and study some new estimates of the law and of the divergences for discrete and continuous parametric models.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00215-2
Keziou, Amor 1

1 LSTA, boı̂te courrier 158, 8A, Université Paris-6, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2003__336_10_857_0,
     author = {Keziou, Amor},
     title = {Dual representation of \protect\emph{\ensuremath{\varphi}}-divergences and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {857--862},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00215-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00215-2/}
}
TY  - JOUR
AU  - Keziou, Amor
TI  - Dual representation of φ-divergences and applications
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 857
EP  - 862
VL  - 336
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00215-2/
DO  - 10.1016/S1631-073X(03)00215-2
LA  - en
ID  - CRMATH_2003__336_10_857_0
ER  - 
%0 Journal Article
%A Keziou, Amor
%T Dual representation of φ-divergences and applications
%J Comptes Rendus. Mathématique
%D 2003
%P 857-862
%V 336
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00215-2/
%R 10.1016/S1631-073X(03)00215-2
%G en
%F CRMATH_2003__336_10_857_0
Keziou, Amor. Dual representation of φ-divergences and applications. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 857-862. doi : 10.1016/S1631-073X(03)00215-2. http://www.numdam.org/articles/10.1016/S1631-073X(03)00215-2/

[1] M. Broniatowski, Estimation through Kullback–Leibler divergence, Math. Methods Statist. (2003) (submitted)

[2] Cressie, N.; Read, T. Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B, Volume 46 (1984) no. 3, pp. 440-464

[3] Csiszar, I. On topological properties of f-divergences, Studia Sci. Math. Hungar., Volume 2 (1967), pp. 329-339

[4] Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications, Jones & Bartlett, 1998

[5] Liese, F.; Vajda, I. Convex Statistical Distances, Teubner, Leipzig, 1987

[6] Lindsay, B.G. Efficiency versus robustness: the case for minimum Hellinger distance and related methods, Ann. Statist., Volume 22 (1994), pp. 1081-1114

[7] Morales, D.; Pardo, L.; Vajda, I. Asymptotic divergence of estimates of discrete distributions, J. Statist. Plann. Inference, Volume 48 (1995) no. 3, pp. 347-369

[8] Rüschendorf, L. On the minimum discrimination information theorem, Statist. Decisions, Suppl., Volume 1 (1984), pp. 263-283

[9] van der Vaart, A. Asymptotic Statistics, Cambridge Series in Statistical and Probabilitic Mathematics, 1998

Cité par Sources :