Nous montrons un lemme de connexion C1 pour les pseudo-orbites des difféomorphismes des variétés compactes. Nous explorons alors les conséquences pour les difféomorphismes C1-génériques. Par exemple, les difféomorphismes conservatifs C1-génériques sont transitifs.
We prove a C1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C1-generic diffeomorphisms. For instance, C1-generic conservative diffeomorphisms are transitive.
Accepté le :
Publié le :
@article{CRMATH_2003__336_10_839_0, author = {Bonatti, Christian and Crovisier, Sylvain}, title = {Recurrence and genericity}, journal = {Comptes Rendus. Math\'ematique}, pages = {839--844}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2003}, doi = {10.1016/S1631-073X(03)00203-6}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00203-6/} }
TY - JOUR AU - Bonatti, Christian AU - Crovisier, Sylvain TI - Recurrence and genericity JO - Comptes Rendus. Mathématique PY - 2003 SP - 839 EP - 844 VL - 336 IS - 10 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00203-6/ DO - 10.1016/S1631-073X(03)00203-6 LA - en ID - CRMATH_2003__336_10_839_0 ER -
%0 Journal Article %A Bonatti, Christian %A Crovisier, Sylvain %T Recurrence and genericity %J Comptes Rendus. Mathématique %D 2003 %P 839-844 %V 336 %N 10 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00203-6/ %R 10.1016/S1631-073X(03)00203-6 %G en %F CRMATH_2003__336_10_839_0
Bonatti, Christian; Crovisier, Sylvain. Recurrence and genericity. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 839-844. doi : 10.1016/S1631-073X(03)00203-6. http://www.numdam.org/articles/10.1016/S1631-073X(03)00203-6/
[1] Création de connexions en topologie C1, Ergodic Theory Dynamical Systems, Volume 21 (2001), pp. 339-381
[2] Ch. Bonatti, L.J. Dı́az, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., to appear
[3] Homoclinic classes for -generic vector fields, Ergodic Theory Dynamical Systems, Volume 23 (2003), pp. 1-13
[4] Isolated invariant sets and Morse index, CBMS, 38, American Mathematical Society, 1978
[5] Connecting invariant manifolds and the solution of the C1-stability and -stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137
[6] Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II, Berlin, 1998, Doc. Math., Extra Vol. II (1998), pp. 797-808 (electronic)
[7] Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc., Volume 269 (1982), pp. 247-271
[8] Lyapunopv stability of ω-limit sets, Discrete Contin. Dynam. Systems, Volume 8 (2002), pp. 671-674
[9] The closing lemma, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[10] The C1-closing lemma, including Hamiltonians, Ergodic Theory Dynamical Systems, Volume 3 (1983), pp. 261-314
[11] C1-connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230
Cité par Sources :