Group Theory
Invariant theory and eigenspaces for unitary reflection groups
[Invariants et espaces propres des groupes de réflexion complexes]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 795-800.

En utilisant des variantes d'une formule de Orlik et Solomon relative aux invariants d'un groupe de réflexions complexes G, nous redémontrons de façon élémentaire deux résultats de Lehrer and Springer, en particulier le fait qu'un entier est régulier pour G si et seulement si il divise le même nombre de degrés et de codegrés. Notre preuve évite l'analyse cas par cas.

We prove some variations of formulas of Orlik and Solomon in the invariant theory of finite unitary reflection groups, and use them to give elementary and case-free proofs of some results of Lehrer and Springer, in particular that an integer is regular for a reflection group G if and only if it divides the same number of degrees and codegrees.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00192-4
Lehrer, Gustav I. 1 ; Michel, Jean 2, 3

1 School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia
2 LAMFA, Université de Picardie-Jules Verne, 33, rue Saint-Leu, 80039 Amiens cedex, France
3 Institut de mathématiques, Université Paris VII, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2003__336_10_795_0,
     author = {Lehrer, Gustav I. and Michel, Jean},
     title = {Invariant theory and eigenspaces for unitary reflection groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--800},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00192-4},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00192-4/}
}
TY  - JOUR
AU  - Lehrer, Gustav I.
AU  - Michel, Jean
TI  - Invariant theory and eigenspaces for unitary reflection groups
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 795
EP  - 800
VL  - 336
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00192-4/
DO  - 10.1016/S1631-073X(03)00192-4
LA  - en
ID  - CRMATH_2003__336_10_795_0
ER  - 
%0 Journal Article
%A Lehrer, Gustav I.
%A Michel, Jean
%T Invariant theory and eigenspaces for unitary reflection groups
%J Comptes Rendus. Mathématique
%D 2003
%P 795-800
%V 336
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00192-4/
%R 10.1016/S1631-073X(03)00192-4
%G en
%F CRMATH_2003__336_10_795_0
Lehrer, Gustav I.; Michel, Jean. Invariant theory and eigenspaces for unitary reflection groups. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 795-800. doi : 10.1016/S1631-073X(03)00192-4. http://www.numdam.org/articles/10.1016/S1631-073X(03)00192-4/

[1] Lehrer, G.I.; Springer, T.A. Intersection multiplicities and reflection subquotients of unitary reflection groups I, Geometric Group Theory down Under, Canberra, 1996, de Gruyter, Berlin, 1999, pp. 181-193

[2] Lehrer, G.I.; Springer, T.A. Reflection subquotients of unitary reflection groups, Canadian J. Math., Volume 51 (1999), pp. 1175-1193

[3] Orlik, P.; Solomon, L. Unitary reflection groups and cohomology, Invent. Math., Volume 59 (1980), pp. 77-94

[4] Pianzola, A.; Weiss, A. Monstrous E10's and a generalization of a theorem of L. Solomon, C. R. Math. Rep. Acad. Sci. Canada, Volume 11 (1989), pp. 189-194

[5] Springer, T. Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198

[6] Steinberg, R. Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc., Volume 112 (1964), pp. 392-400

Cité par Sources :