Mathematical Problems in Mechanics
On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity
[Déplacements rigides et leur relation au lemme du déplacement rigide infinitésimal en élasticité tri-dimensionnelle]
Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 873-878.

Soit Ω un ouvert connexe de 3 et Θ une immersion de Ω dans 3 . On établit que l'ensemble formé par les déplacements rigides de l'ouvert Θ(Ω) est une sous-variété de dimension 6 et de classe 𝒞 de l'espace 𝐇 1 (Ω). On montre aussi que les déplacements rigides infinitésimaux du même ouvert Θ(Ω) engendrent le plan tangent à l'origine à cette sous-variété.

Let Ω be an open connected subset of 3 and let Θ be an immersion from Ω into 3 . It is established that the set formed by all rigid displacements of the open set Θ(Ω) is a submanifold of dimension 6 and of class 𝒞 of the space 𝐇 1 (Ω). It is also shown that the infinitesimal rigid displacements of the same set Θ(Ω) span the tangent space at the origin to this submanifold.

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00191-2
Ciarlet, Philippe G. 1 ; Mardare, Cristinel 2

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
@article{CRMATH_2003__336_10_873_0,
     author = {Ciarlet, Philippe G. and Mardare, Cristinel},
     title = {On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {873--878},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00191-2},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00191-2/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Mardare, Cristinel
TI  - On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 873
EP  - 878
VL  - 336
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/S1631-073X(03)00191-2/
DO  - 10.1016/S1631-073X(03)00191-2
LA  - en
ID  - CRMATH_2003__336_10_873_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Mardare, Cristinel
%T On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity
%J Comptes Rendus. Mathématique
%D 2003
%P 873-878
%V 336
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/S1631-073X(03)00191-2/
%R 10.1016/S1631-073X(03)00191-2
%G en
%F CRMATH_2003__336_10_873_0
Ciarlet, Philippe G.; Mardare, Cristinel. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity. Comptes Rendus. Mathématique, Tome 336 (2003) no. 10, pp. 873-878. doi : 10.1016/S1631-073X(03)00191-2. http://www.numdam.org/articles/10.1016/S1631-073X(03)00191-2/

[1] Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988

[2] Ciarlet, P.G. Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Amsterdam, 2000

[3] Ciarlet, P.G.; Larsonneur, F. On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl., Volume 81 (2002), pp. 167-185

[4] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in three-dimensional elasticity, Math. Models Methods Appl. Sci., to appear

[5] P.G. Ciarlet, C. Mardare, On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory, C. R. Acad. Sci. Paris, Sér. I, to appear

[6] Friesecke, G.; James, R.D.; Müller, S. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[7] Reshetnyak, Y.G. Liouville's theory on conformal mappings under minimal regularity assumptions, Siberian Math. J., Volume 8 (1967), pp. 69-85

Cité par Sources :