Dans cette Note, nous montrons comment construire le bord conforme des espaces–temps de Margulis lorsque Γ est un groupe de Schottky affine.
In this Note, we show how to construct the conformal boundary of Margulis space–times when Γ is an affine Schottky group.
Accepté le :
Publié le :
@article{CRMATH_2003__336_9_751_0, author = {Frances, Charles}, title = {The conformal boundary of {Margulis} space{\textendash}times}, journal = {Comptes Rendus. Math\'ematique}, pages = {751--756}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00170-5}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00170-5/} }
TY - JOUR AU - Frances, Charles TI - The conformal boundary of Margulis space–times JO - Comptes Rendus. Mathématique PY - 2003 SP - 751 EP - 756 VL - 336 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00170-5/ DO - 10.1016/S1631-073X(03)00170-5 LA - en ID - CRMATH_2003__336_9_751_0 ER -
Frances, Charles. The conformal boundary of Margulis space–times. Comptes Rendus. Mathématique, Tome 336 (2003) no. 9, pp. 751-756. doi : 10.1016/S1631-073X(03)00170-5. http://www.numdam.org/articles/10.1016/S1631-073X(03)00170-5/
[1] Fundamental polyhedra for Margulis space–times, Topology, Volume 31 (1992) no. 4, pp. 677-683
[2] Linear holonomy of Margulis space–times, J. Differential Geom., Volume 38 (1993) no. 3, pp. 679-690
[3] Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math., Volume 1 (1990) no. 2, pp. 149-161
[4] The geometry of crooked planes, Topology, Volume 38 (1999) no. 2, pp. 323-351
[5] C. Frances, Géométrie et dynamique lorentziennes conformes, Thèse, available at www.umpa.ens-lyon.fr/cfrances/
[6] Free properly discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 937-940
[7] On fundamental group of complete affinely flat manifolds, Adv. Math., Volume 25 (1977), pp. 178-187
Cité par Sources :