On considère un modèle simplifié 1−d d'interaction fluide–structure. Le domaine est composé de deux sous-intervalles où l'équation des ondes et de la chaleur sont vérifiées respectivement. Au point d'interface on impose la continuité des états et des dérivées normales. Grâce à l'analyse asymptotique du spectre, on montre l'existence d'une suite de fonctions propres concentrées dans l'intervalle hyperbolique. On en déduit un taux de décroissance optimal des solutions régulières. On considère aussi le problème de contrôle à zéro moyennant un contrôle agissant sur la composante parabolique. On montre que l'espace de données contrôlables a une nature asymétrique : la composante parabolique étant L2 et la composante hyperbolique ayant des coefficients de Fourier exponentiellement petits.
We consider a linearized and simplified 1−d model for fluid–structure interaction. The domain where the system evolves consists in two bounded intervals in which the wave and heat equations evolve respectively, with transmission conditions at the point of interface. First, we develop a careful spectral asymptotic analysis on high frequencies. Next, according to this spectral analysis we obtain sharp polynomial decay rates for the whole energy of smooth solutions. Finally, we prove the null-controllability of the system when the control acts on the boundary of the interval where the heat equation holds. The proof is based on a new Ingham-type inequality, which follows from the spectral analysis we develop and the null controllability result in Zuazua (in: J.L. Menaldi et al. (Eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 198–210) where the control acts on the wave component.
Accepté le :
Publié le :
@article{CRMATH_2003__336_9_745_0, author = {Zhang, Xu and Zuazua, Enrique}, title = {Polynomial decay and control of a 1\ensuremath{-}\protect\emph{d} model for fluid{\textendash}structure interaction}, journal = {Comptes Rendus. Math\'ematique}, pages = {745--750}, publisher = {Elsevier}, volume = {336}, number = {9}, year = {2003}, doi = {10.1016/S1631-073X(03)00169-9}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S1631-073X(03)00169-9/} }
TY - JOUR AU - Zhang, Xu AU - Zuazua, Enrique TI - Polynomial decay and control of a 1−d model for fluid–structure interaction JO - Comptes Rendus. Mathématique PY - 2003 SP - 745 EP - 750 VL - 336 IS - 9 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S1631-073X(03)00169-9/ DO - 10.1016/S1631-073X(03)00169-9 LA - en ID - CRMATH_2003__336_9_745_0 ER -
%0 Journal Article %A Zhang, Xu %A Zuazua, Enrique %T Polynomial decay and control of a 1−d model for fluid–structure interaction %J Comptes Rendus. Mathématique %D 2003 %P 745-750 %V 336 %N 9 %I Elsevier %U http://www.numdam.org/articles/10.1016/S1631-073X(03)00169-9/ %R 10.1016/S1631-073X(03)00169-9 %G en %F CRMATH_2003__336_9_745_0
Zhang, Xu; Zuazua, Enrique. Polynomial decay and control of a 1−d model for fluid–structure interaction. Comptes Rendus. Mathématique, Tome 336 (2003) no. 9, pp. 745-750. doi : 10.1016/S1631-073X(03)00169-9. http://www.numdam.org/articles/10.1016/S1631-073X(03)00169-9/
[1] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065
[2] The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations, Volume 5 (2000), pp. 465-514
[3] Controllability of Evolution Equations, Lecture Notes Series, 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994
[4] Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Tome 1 : Contrôlabilité exacte, RMA, 8, Masson, Paris, 1988
[5] Explicit observability estimate for the wave equation with potential and its application, Proc. Roy. Soc. London Ser. A, Volume 456 (2000), pp. 1101-1115
[6] X. Zhang, E. Zuazua, Polynomial decay and control of a hyperbolic-parabolic coupled system, Preprint
[7] Null control of a 1−d model of mixed hyperbolic-parabolic type (Menaldi, J.L. et al., eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 198-210
Cité par Sources :